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Executive summary
In February 2016, FAO issued a report on Crop Yield Forecasting: Methodological and 
Institutional Aspects, which covered crop yield forecasting at regional and national levels. 
The present review intends to complement this report, examining current advances in crop 
yield modeling at field and farm scale. 

It should be noted that almost all crop yield forecasting systems applied at regional level 
rely on crop growth models that were developed and calibrated at field level. As a result, the 
names of the models referred to in the abovementioned report  will also appear here; however, 
the vast majority of the publications cited will refer to field- or parcel-level applications.

On the other hand, farm modeling refers mostly to private sector activities, and in particular 
to precision farming. Its components may be seen as relating to automatized recording and 
Geographic Information System (GIS) management of geo-localized information (field limits, 
machinery activity, and soil and local yield measures), and to the modeling of the interaction 
between biophysical and economic crop yield characteristics. Access to information relating 
to crop yield modeling in precision farming is particularly limited. Based on conversations 
with numerous contacts shared within the industry, such limitation appears to be due mainly 
to the fact that competition restrains methodological transparency and that the complexity 
of the involved models is in some way exaggerated.

Surprisingly, since 2010, the scientific production in this field is particularly rich, due mainly to 
a series of international activities seeking to facilitate multi-disciplinary collaborations. In the 
context of climate change, important initiatives such as the Agriculture Model Intercomparison 
and Improvement Project (AGMIP), Modelling European Agriculture with Climate Change 
for Food Security (MACSUR), Next Model Generation (NEXTGEN) and the Geospatial Open 
Source Hosting of Agriculture, Resource & Environmental Data (GEOSHARE) fostered efforts 
to engage in ambitious crop yield model intercomparison, calibration and identification of 
model improvement needs. Antle et al. (2015) present their views on the future model 
design derived from selected user cases and the experience of AGMIP. Their vision shifts 
on multiple levels: from the research context to (commercial) decision-making tools; from 
pure biophysical modelling to a more economic analysis; from main effect models to models 
incorporating interactions between the effects of CO2, O3, N, H2O; from a simple point model 
to a model based on a parallel run of an ensemble of gridded points; from single forecast to 
an analysis of sensitivity and model uncertainty.

Data quality and accessibility has also drawn the attention of the crop yield modelling 
community. Hunt and Boote (1998) have described the minimum data set required as 
comprising the following: site location and slope, daily global radiation, maximum and 
minimum temperatures, daily rainfall, soil type, depth, texture, organic content, nitrogen and 
pH, previous crop, initial soil water and nitrogen, cultivar, planting date, density, and irrigation/
fertilization amounts. The length and frequency of climatic data series have been defined 
and near-real-time and reference data sets are now available from several agencies (such 
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as the United States Geological Service or USGS, the National Oceanic and Atmospheric 
Administration or NOAA, the European Space Agency or ESA, and FAO), which deliver the 
information on soil, weather and crop masks as open access public goods. The availability 
of Global Positioning Services (GPS), GIS and automatic data transmission has also boosted 
private-sector prescriptive farming, allowing for an intra-field management of fertilization and 
water application that can ensure the sustainable economic use of the factors of production. 

The main processes modeled in the equation system will mimic the factors limiting plant 
growth: soil moisture and nutrient availability, and solar radiation. The aspects of crop 
varieties and phenology, planting density, sowing date, rainfall distribution, fertilization 
plan and diseases will in turn interact with these three limiting factors, and influence the 
final storage organ accumulation. Considering that growth is basically dependent on the 
energy balance between the plant’s photosynthesis and respiration activities, the chlorophyll 
pigment, the enzyme activity response to the environment (temperature and water), and 
the light interception will be at the core of the models. Although in recent years the energy 
balance has not improved very much, an increase of accumulation in the storage organs has 
resulted, mainly due to the increase in the harvest index (the ratio of grain yield to shoot 
yield), reaching a level of 50 percent for wheat. The genotype characteristics of the plant are 
thus a compulsory  component of all models.

Despite the progresses achieved in terms of model specification and data quality, much 
uncertainty remains. The major drawbacks of statistical models are that they tend to 
underperform in case of extreme events, and that the pure process-based models require 
a quantity of detailed information that is usually incompatible with the time and budget 
available for operational activities. In the projects for model intercomparison, the range of 
results in a set of 10–15 models is such that the current recommendation is to rely upon an 
ensemble solution of well-recognized models and data. 

The main recent progresses for maize, wheat, rice and soybean may be found in the proceedings 
of the MACSUR and AGMIP projects. Most studies focused upon the simulation of crop response 
to changes in CO2 concentration, extreme temperatures (heat stress and frost damage), rainfall 
and their specificities at each development stage, tropospheric ozone concentration and pest and 
diseases, and crop rotations and intercropping (Müller and Eliot 2015).

Farm decision systems are now widely used in developed countries. The most popular of 
such systems include the following: the Climate Field View, that Monsanto claims to apply 
to more than 50 million ha, Yield Prophet (Australia), Agro Climate (Florida University), AgBiz 
(Oregon State University), and Air Worldwide (Insurance). Unfortunately, most of these 
systems are not open source and thus require farmers to make area-based payments. In 
addition, the crop yield model component seems to have been kept at a minimum level of 
complexity, thus making it impossible to conclude that any progress has been made, other 
than the industrialization of the process. The breeding sector has also identified the potential 
of merging crop models with genetic markers; however, in this context too, the explanation 
provided (general mixed linear models modelling the interaction between quantitative trait 
loci – QTL – and the environment) do not facilitate comprehension of the exact progress 
made and their potential replication.
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The 2003 special issue of the European Journal of Agronomy on “Modeling Cropping Systems: 
science, software and application” and the 2015 special issue of Agricultural System, titled 
“Towards a New Generation of Agricultural System Models, Data, and Knowledge Products” 
assessed the progresses made over the last 10 years on crop yield modeling and advocated 
a recommended direction of move. Likewise, it may be expected that a new generation of 
modelers will in due time issue a 2025 review issue, showing that the current projects have 
evolved into reality and proposing new goals.
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1
Introduction
In most countries, although the proportion of national GDP constituted by the agricultural 
sector has been declining for decades, the forecasting of food production remains a major 
challenge for all the economic actors of modern societies. At all levels – government, industry, 
farm, household – decisions must be taken on the basis of advanced knowledge of the 
potential influence of economic, biotic and abiotic factors upon crop yields of the major food 
commodities, especially the four major crops constituting the priorities of the Agricultural 
Market Information System (AMIS), the significance of which is clear from Table 1 below: 

•	 Corn, with a harvested area of 177 million ha, a production of 959 million tonnes and 
exports for only 140 million tonnes; 

•	 Wheat, with 225 million ha, 735 million tonnes and 173 million tonnes respectively; 
•	 Rice, with 160 million ha, 472 million tonnes and 41 million tonnes; and  
•	 Soybean, with 120 million ha, 313 million tonnes, 133 million tonnes. (area/

production/exports in 2015, source USDA PSD). 

Table 1. Illustration of significance of AMIS crops for the year 2015

AMIS 
Crop

Harvested area 
(million tonnes)

Production 
(million tonnes)

Exports 
(million tonnes)

Corn 177 959 140

Wheat 225 735 173

Rice 160 472 41

Soybean 120 313 133

Source: USDA PSD.
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As is clear from Figures 1 to 3 below, since 1995, the world production of these commodities 
has followed a positive linear trend, largely explained by increases of the sown areas (10 percent 
for wheat and rice, 25 percent for corn and 50 percent for soybean). As studied by Potgieter et 
al. (2016), in Australia (a major player in cereals exports), over the last 30 years, yield increases 
remained limited for major cereal crops such as wheat, maize and rice (remaining at 1.2 percent 
yearly for wheat, representing an increase of only 21 kg/ha per year) compared to sorghum 
(which increased by 2.1 percent, or 44 kg/ha per year). Although the inter-annual variability of 
world production remained limited, with standard deviations of 1 percent for rice, 2 percent 
for wheat and corn and 4 percent for soybean, at the same time, the prices changed by a 1:4 
ratio (compared to wheat and rice in 2008/2009). The vital character of food commodities, 
coupled with the limited stocks, largely explains the price volatility observed (in 2008, the low 
ending stocks were 169 million tonnes for wheat and 97 million tonnes for rice) and the erratic 
behavior of economic agents in light of the lack of information.

In reaction to these phenomena, at the 2011 G20 summit, the ministers of agriculture decided 
to launch AMIS1, an inter-agency platform tasked with enhancing food market transparency 
and encouraging the coordination of policy action in response to market uncertainty. 
At the same time, the private sector started to become active. The Bill & Melinda Gates 
Foundation invested in the monitoring of agricultural production, by introducing a change in 
data collection and analyses methods (Global Strategy for improving Agricultural and Rural 
Statistics2) and by supporting technical advances in modelling (the NEXTGEN project) and 
the use of new technologies (the Spurring a Transformation for Agriculture through Remote 
Sensing project, or STARS3). The food industry also began to model food production, aiming 
to make a joint academic, administration and industry effort for the purpose of Assessing 
Sustainable Nutrition Security (ILSI/CIMSANS; see Acharya et al., 2014). 

1	 http://www.amis-outlook.org/amis-about/en/.
2	 http://gsars.org/en/.
3	 http://www.stars-project.org/en/.
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Figure 1. �Evolution of yield for wheat, corn, soybean and rice in selected regions 
(1995–2016).

Source: PS&D, FAOSTAT (2016).
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Figure 2. Evolution of world productions (Mtonnes) and areas (Mha).

      
Source: PS&D, FAOSTAT (2016).

Figure 3. IGC Grains and Oilseeds Index and sub-indices (daily).

Source: International Grains Council (IGC).
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In addition, the academic sector launched supranational initiatives of model comparison and 
improvement, namely AgMIP 4 and MACSUR 5.

Finally, start-up companies entered the field, providing alternative sources of information 
or a wholly new type of service. Opting to use microsatellites, companies such as Planet, 
TerraBella, Satellogic and Blacksky Global offer very high-resolution imagery at a very high 
time frequency. At the other end of the chain, precision farming agriculture has developed 
a range of services, such as field management advice based on meteorological and image 
(including drone) information. 

However, grain production has two components: the yield and the area. For yield estimation, 
the most logic method is to proceed to field cutting. However, in addition to its high costs, 
this method requires waiting for crop maturity, a factor that often delays data availability. 
Therefore, yield forecasting relies mainly on models calibrated on the field measurements 
performed in previous years. However, once models rely on remotely sensed imagery, the 
crop locations of the current year will be required, either as crop-specific masks (which is 
difficult due to crop rotations), cropland masks (as in ESA’s SEN2 Africa product), or through 
yield correlation at pixel level (Kastens et al., 2005). The special issue of the Remote Sensing 
journal focusing on “Global Cropland” reviews this issue in detail (Thenkabail, 2010).

Yield forecast thus remains one of the major priorities for field managers and policymakers. 
Timeliness of information is of the greatest importance at field and national levels (at the 
former, the incorrect treatment of disease in due time can be devastating; at the latter, 
arranging for food imports before a crisis is less costly than obtaining emergency food 
assistance). Bias and the precision of forecasts are often considered from a “softer” point 
of view and the notion of root mean square error (RMSE) of the prediction (Wallach, 2016) is 
often the only criterion against which models are evaluated.

Before examining the subject matter of this review in detail, it appears relevant to clarify the 
following definitions, which will appear recurrently in the text:

•	 Yield potential (Yp): the yield of an adapted crop cultivar as determined by solar 
radiation, temperature, carbon dioxide, and genetic traits that govern the length of 
growing period, light interception by the crop canopy and its conversion to biomass, 
and the partition of biomass to the harvestable organs. 

•	 Water-limited yield potential (Yw) is determined by the factors seen above and by 
water supply amount and distribution during the crop growth period, as well as by 
field and soil properties that affect soil water availability, such as slope, plant-available 
soil water-holding capacity, and depth of root zone. 

•	 Actual yield (Ya): the potential yield minus the yield gap due to limiting factors 
caused by non-optimal management (poor sowing dates, lack of nutrients), 
environmental factors (temperatures) and abiotic factors such as weeds and pests. 
Actual yield is usually the yield provided by national statistical systems.

4	 http://www.agmip.org/.
5	 http://macsur.eu/index.php.
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•	 Relative yield (Y%): the ratio of Ya to Yw expressed as a percentage. This is a useful 
indicator of production as a function of potential. A Y% of 80 percent is regarded to 
fall within the upper range of wheat yields consistently achieved by leading farmers 
over a number of seasons.

•	 Exploitable yield: the additional yield that would be harvested if 80 percent of 
Yw is achieved (Exploitable yield = ((Yw × 0.8) − Ya)), with economic and climatic 
uncertainties constraining yields to fall within this range (Lobell et al., 2009). 

Figure 4. From potential to actual yields: the various modelling levels. 

Source: Van Ittersum et al. 2013.
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The components of the crop 
yield model 
Rana (2014) recently reviewed the advances made in crop growth and productivity. Soil 
moisture and nutrient availability are the first factors limiting growth, followed by solar 
radiation. Crop varieties and phenology, planting density, sowing date, rainfall distribution, 
the fertilization plan and any diseases will each interact with these three limiting factors and 
influence the final storage organ accumulation. 

It should be recalled that growth is basically dependent upon the energy balance between 
the plant’s photosynthesis and respiration activities: 

•	 Chlorophyll is at the core of photosynthesis. Composed of four ions of nitrogen 
and one of magnesium (C55H72O5N4Mg), its concentration in the leaves will depend 
on the availability of these nutrients. Last but not least, phosphorus will be also 
essential as ensuring intra-cell energy transfers.

•	 The temperature will influence enzyme activity during the Calvin cycle of 
photosynthesis, thus influencing the rate of CO2 absorption. Each plant species has 
a specific optimal temperature range, which varies among C3 and C4 plants. For 
the former, which include wheat, rice, soybean and sugar beet and constitute 85 
percent of land plants, the optimal range is 25–30°C; for the latter, which comprise 
maize, sorghum, millet and sugarcane, and compose only 3 percent of plants, the 
optimal temperature is 35°C, due to their lower photorespiration level.

•	 The intercepted light will provide the energy required in the first phase of 
photosynthesis. Plant chlorophyll is most receptive to blue light (always associated 
with red light), because the blue wavelength provides the greatest intensity 
(ultraviolet and infrared waves being filtered by the atmosphere) and energy content 
(which is greater at short wavelengths) in the solar spectrum. Although 95 percent 
of the intercepted light will be lost due to heat regulation by transpiration, light is 
rarely the limiting factor, even though exceptional cases may occur: in June 2016, 

2
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the scarce sunlight reduced cereals yield by approximately 20 percent in central 
Europe. 

•	 Water is necessary to ensure plant turgidity (structural stability), transpiration (heat 
emission) and photosynthesis (energy production); however, the quantity required 
for photosynthesis is marginal, such that water deficiency may be expected to have 
only indirect effects: enzyme efficiency is hampered by dehydration and stomata 
closure limits the availability of CO2.

•	 O2 and CO2 are a priori at a constant concentration in the atmosphere (even though 
their concentrations reduce with altitude); however, CO2 must penetrate the plant 
through the leaves’ stomata (which open or close in function of temperature and 
water availability), whereas O2 can pass through the cuticle layer. In addition, C3 
and C4 plants differ in their use efficiency of CO2, with C4 plants again displaying 
greater efficiency.

The energy balance will result from the equilibrium between: 
•	 the glucose production of photosynthesis in the leaf’s chloroplast [H2O + sunlight 
 O2 (waste) + ATP + NADPH + CO2  ADP + P + NADP + glucose (for efficient 
energy transport)] and 

•	 the glucose consumption during cell respiration (in the mitochondria), which requires 
the small ATP’s energy content (C6H12O6 +O2  CO2+H2O+ ATP). 

This may lead to a potential positive balance for growth and storage. 

Considering a fixed value for the maximum light-saturated CO2 exchange rate per unit leaf 
area (CER), it may be seen that one should achieve, as rapidly as possible, the maximum 
leaf area index (LAI) compatible with the light intensity to reach the maximum possible 
assimilation, which in turn enables the maximum sink storage possible. Therefore, nutrients 
also have an important role to play in enabling the use of the available energy to achieve plant 
growth. Finally, the conversion coefficient e, defined as the quantity of biomass produced per 
unit of intercepted radiation, provides a measure of the efficiency with which the captured 
radiation is used to produce new plant material. In the absence of stress, e typically ranges 
between 1.0 and 1.5 g MJ–1 for C3 species in temperate environments, 1.5 to 1.7 g MJ–1 for 
tropical C3 species, and up to 2.5 g MJ–1 for tropical C4 species.

Although the energy balance has improved little in recent years, the growth in the accumulation 
in the storage organs may be ascribed mainly to the increase in the harvest index (ratio of 
grain yield and shoot yield), which has now reached 50 percent for wheat.

Bearing the above processes in mind, it is necessary to consider that plant growth will consist 
of successive development stages following a sigmoid function and that the influence of 
the limiting factors (temperature, water, nutrients, light, diseases) will be stage-dependent. 
As an example, a low photosynthesis activity at the grain-filling stage may be compensated 
by a mobilization of the stem sugar reserves, as occurs e.g. for wheat and sorghum. The 
determination of the occurrence of the individual development stages is usually based on the 
notion of Growing Degree Days (GDDs). These are defined as the number of mean temperature 
degrees above a certain threshold base temperature (which is crop specific: 5.5°C for wheat 
and barley, and 10°C for corn, soybean and rice) accumulated on a daily basis over a given 
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period of time. For cereals, the sequential stages are the following: leaf development, tillering, 
stem elongation, booting, heading, flowering, development of fruit, ripening and senescence.

Functional/empirical models are an elegant compromise between the demanding 
process-based model and the light statistical models (Basso et al., 2013). Through simple 
relations, major physiological processes may be approximated. The first category of models 
will predict the potential yield (in greenhouse conditions) based on temperature, radiation, 
CO2 and crop specificities, such as its phenology and biomass partitioning. More complex 
models will forecast the water/nutrient production by inserting equations simulating soil 
water, nitrogen, and carbon dynamics. Rare are the models capable of simulating the actual 
yield incorporating the reduction of yield due to pests, diseases or weeds. The Decision 
Support System for Agrotechnology Transfer (DSSAT) is capable, to some extent, of modelling 
pests and diseases, whereas the Agricultural Production Systems Simulator (APSIM) can 
also to model intercropping.
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Main crop yield models
Readers interested in the history of modelling agricultural systems should refer to Jones et al. 
(2016). Over the last five decades, research teams have produced hundreds of crop models 
differentiated by the crops covered, the targeted regions, the temporal and spatial scales, 
the approach (statistical or process-based), the input data required and the output variables 
(e.g. potential or actual yield, biomass and vegetation indices). Di Paola et al. (2016) reviewed 
approximately 70 models, classifying them in terms of model type, submodels, scale and 
time paths, crops addressed, place of application and IT system used. Most models were 
developed for field-level simulations and their actual use at regional or national levels often 
raises doubts as to their accuracy and data needs (Morell et al., 2016).

Model classification may rely on the purpose for which the model was developed. Such purpose 
may be the scientific understanding of crop growth (mechanistic or functional/empirical 
models) or the provision of support to decision making processes (predictive or descriptive 
models responding to external drivers). The modeling approaches separate statistical models 
(which build current predictions on the basis of past experience) from dynamic simulation 
models (which describe the effect of changes in weather or management practices). The 
spatial and temporal scales are the third criterion against which to differentiate models. In 
terms of space, the scale may range from field scale (point models with homogeneous 
conditions within field) to regional scale; as for time, the scale ranges from hourly steps (for 
pest management processes) to ten-daily steps (for delivering seasonal yield predictions). 
The major crop models currently in use are APSIM, the Cropping Systems Simulation model 
(CROPSYST), DSSAT, the Environmental Policy Integrated Climate model (EPIC), ORYZA 
(from the Latin word for rice), the Simulateur Multidiscplinaire pour les Cultures Standard 
(STICS), and the World Food Studies Model (WOFOST). 

Considering the Global Gridded Crop Model Intercomparison project (Eliot et al., 2015; 
Rosenzweig et al., 2014), it is possible to identify the current main crop modeling systems 
selected by the AGMIP community for wheat, maize, soybean and rice. 

3



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 12

In AGMIP Phase 1, three types of models are available: 
•	 Site-based process models (Elliot and Müller, 2015) are biophysical crop growth 

field-scale models that are applied globally on a grid of points. They rely upon a 
detailed calibration of the crop growth processes, which requires a huge quantity 
of information on cultivars, management choices and soil inputs. The site-based 
process models used by the AGMIP community are DSSAT, EPIC and APSIM.

•	 Empirical or process-based models are large-area-scale models that are hybrid in 
the sense that they are not fully process-based. Indeed, some functional equations 
(i.e. management and inputs) are replaced with empirical calibration, to simplify 
the computations. They were developed to specifically simulate crop production at 
continental scale. The models used are PEGASUS (Predicting Ecosystem Goods And 
Services Using Scenarios), Global Agricultural Monitoring (GLAM), WOFOST-CGMS, 
PRYSBI-2 (Process-based Regional Yield Simulator with Bayesian Inference).

•	 Dynamic Global Vegetation Models (DGVMs) are used mainly to simulate the 
effects of future climate change on natural vegetation and its carbon and water cycles. 
DGVMs, which appeared in the mid-1990s, commonly simulate a variety of plant and 
soil physiological processes – such as the plant’s functional type, photosynthesis, 
competition for light-water-nitrogen, air temperature and solar radiation – and derive 
plant-specific indices, such as net primary production, soil-available water, root zone 
water supply, LAI, potential evapotranspiration, total live vegetation carbon, plant/
crop establishment and mortality. Crop yields are usually not the prime focus of 
these models. DGVMs work at various time steps, ranging from hour to month or 
even year. Simulations usually run across a range of spatial scales and are carried out 
for thousands of “cells”, which are assumed to present homogeneous conditions. 
The DGVMs used under AGMIP are LPJmL (Lund-Postdam-Jena managed Land), 
Orchidee-crop, LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator), 
CLM-Crop (Community Land Model – Crop)), ISAM (Integrated Science Assessment 
Model) and DLEM-Ag (Dynamic Land Ecosystem Model-Agriculture).

Following Basso et al. 2014, the approaches to yield forecasting will be divided into three 
categories: (1) crop simulation models, (2) remote sensing forecast and (3) statistical models 
that use the outputs produced under the first two approaches as explanatory variables.

3.1 Crop simulation models 

Crop simulation models seek to predict field-scale crop yield in function of crop variety 
specificities, soil and weather conditions and management practice. They usually require 
site-specific detailed information, in function of the model’s complexity. Renowned examples 
of such models are DSSAT (United States of America) and APSIM (Australia). Although 
stochastic models do exist to introduce uncertainty into the input data, most of the current 
decision-making models are deterministic. 

The minimum data set required is described by Hunt and Boote (1998) as comprising 
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the following: site location and slope, daily global radiation, maximum and minimum 
temperatures, daily rainfall, soil type, depth, texture, organic content, nitrogen and pH 
levels, previous crop(s), initial soil water and nitrogen, cultivar, planting date, density, and 
irrigation/fertilization amounts. More recently, Grassini et al. (2015) examine the issue of 
the data requirements for reliable crop modeling in the United States of America, Argentina 
and Kenya. For weather data, they conclude that between 10 and 20 years of archived 
information are necessary in function of the difficulties that may be posed by the sites 
(i.e. initial data quality and level of inter-annual variability) to maintain the yield estimates 
within +/- 10 percent of the estimations based on 30 years. The authors consider that data 
measured on a daily basis at least are required for pluviometry and temperature (Tmin, Tmax). 
With the exception of wind speed, the other variables (solar radiation and vapour pressure) 
necessary to calculate evapotranspiration can be derived or retrieved from data sets such as 
NASA-POWER. Cropping system details are also required (sowing dates, crop sequence in 
case of multiple-year cropping, irrigated or rain-fed cultivation, the GDDs between sowing 
and grain maturity for recent cultivars, and plant density). Usually, these must be derived 
from ancillary data. Soil information comprises mainly slope, drainage, soil depth and texture 
classes (for soil water capacity – the Plant Available Soil Water, or PASW).

Van Ittersum et al. (2013) insist that models must be rigorously evaluated for their ability 
to reproduce measured yields of field crops that have received near-optimal management 
practices, across a wide range of environments and management practices. They summarize 
the key attributes of crop growth simulation models as shown in Figure 5.

Figure 5. Key attributes of crop growth simulation models.

Desired attributes of crop simulation models

Desired attributes Explanation

Daily step simulation
Simulation of daily crop growth and development 
based on weather, soil, and crop physiological 
attributes

Flexibility to simulate management practices Key management practices include: sowing date, 
plant density, cultivar maturity

Simulation of fundamental physiological processes
Simulation of key physiological processes such as 
crop development, net carbon assimilation, biomass 
partitioning, crop water relations, and grain growth

Crop specificity

Should reflect crop-specific physiological attributes 
for respiration and photosynthesis, critical stages 
and growth periods that define vegetative and grain 
filling periods, and canopy architecture

Minimum requirement of crop ‘genetic’ coefficients
The model should have a low requirement of crop-
site ‘genetic’ coefficients, preferably only a limited 
number of phenological coefficients
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Desired attributes of crop simulation models

Desired attributes Explanation

Validation against data from field crops that approach 
Yp and Yw

Comparison of model outcomes (grain yield, 
aboveground dry matter, crop evapotranspiration) 
against actual measured data from field crops 
that received management practice conductive to 
achieve Yp (irrigated) or Yw (rainfed crops)

User friendly

Models embedded in user-friendly interfaces, where 
required data inputs and outputs can be easily 
visualized, and with flexbility to modify defalut 
values for internal parameters

Full documentation of model parameterization and 
availability

Publicly available models, published in the peer-
review literature, with full documentation and 
publicly available code, and with reference to data 
sources for internal parameter values

Source: Van Ittersum et al. 2013.

As examples of Crop Simulation Models (CSM), the following sections elaborate upon the 
presentation of Ritchie’s System Approach to Land Use Sustainability (SALUS) model1 and on 
the paper by Holzworth et al. (2014) on the evolution of the APSIM model. These two models 
represent simple and complex cases respectively.

The SALUS model should be considered as a simplified version of the DSSAT. Among 
other uses, it enables simulations for wheat, maize, soybean and rice. The SALUS simulation 
system is designed to model continuous crop, soil, water and nutrient conditions under 
different management strategies for multiple years. These strategies may present various 
crop rotations, planting dates, plant populations, irrigation and fertilizer applications, and 
tillage regimes. The program simulates plant growth and soil conditions every day (during 
growing seasons and fallow periods) for any time period, when weather sequences are 
available. For any simulation run, a number of different management strategies can be run 
simultaneously. Every day, and for each management strategy being run, all major components 
of the crop-soil-water model are executed. These components are: management practices, 
water balance, soil organic matter, nitrogen and phosphorous dynamics, heat balance, plant 
growth and plant development. The water balance considers surface runoff, infiltration, 
surface evaporation, saturated and unsaturated soil water flow, drainage, root water uptake, 
soil evaporation and transpiration. The soil organic matter and nutrient model simulates 
organic matter decomposition, nitrogen mineralization and formation of ammonium and 
nitrate, nitrogen immobilization, gaseous nitrogen losses and three pools of phosphorus. 
The development and growth of plants considers the environmental conditions (particularly 
temperature and light) to calculate the plant’s potential rates of growth. This growth is then 
reduced on the basis of water and nitrogen limitations.

1	 http://nowlin.psm.msu.edu/salus/overview.html.
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Figure 6. Diagram of the components of the SALUS model.

Source: J.T. Ritchie. 

The biophysical model consists of three main structural components: 
a.	 A set of crop growth modules (derived mainly from the Crop Environment 

Resource Synthesis (CERES) model. Phasic development is controlled by 
environmental variables (e.g. degree days and photoperiod), which are governed 
by variety-specific genetic coefficients. Dry matter production (DMP) is a function 
of the potential rates (controlled by solar radiation and parameters defining the 
variety-specific growth potential), which are then reduced according to water and 
nitrogen limitations.

b.	 A soil organic matter and nutrient (nitrogen, phosphorus) cycling module. The main 
external inputs required by this module are: soil texture, bulk density, horizon 
depths, total organic carbon and nitrogen, and initial mineral nitrogen content.

c.	 A soil water balance and temperature module incorporating a time-to-ponding (TP) 
concept to replace the previous CERES runoff and infiltration calculations. The 
main management-influenced parameter controlling the TP curve is the saturated 
hydraulic conductivity at the soil surface, which varies as a function of tillage, 
soil compaction and surface residue amounts. This approach requires additional 
information regarding rainfall intensity.

For pest and diseases, the SALUS model interfaces with external models of pest dynamics 
and damages, incorporating results such as reduction in plant number, photosynthetic rate 
reduction, leaf senescence acceleration, tissue consumption and turgor reduction. 

The Agricultural Production System Simulator (APSIM) is a complex but free-access 
(for non-commercial use) framework for modelling farming systems developed in Australia. 
Its plant models simulate the key physiological processes, including phenology, organ (leaf, 
stem, root and grain) development, water and nutrient uptake, carbon assimilation, biomass 
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and nitrogen partitioning between organs, and responses to abiotic stresses. Thirty plant 
species (including arable crops, cotton, grassland, eucalyptus and oil palm) are currently 
covered in the Plant Modeling Framework, thus providing a library of plant organ and process 
submodels that can be coupled, at runtime, to construct a model in much the same way that 
models can be coupled to construct a simulation. This means that model developers can 
obtain a dynamic composition of lower-level process and organ classes (e.g. photosynthesis 
and leaf) into larger constructions (e.g. wheat and sorghum) without additional coding. The 
impact of increased atmospheric CO2 concentration upon simulated crop growth is modelled 
via changes to radiation use efficiency (RUE), transpiration efficiency (TE) and the critical 
nitrogen concentration (CNC) for crop growth. The evolution of the APSIM model since 1990 
is schematically reproduced in Figure 7.

Figure 7. External models integrated into the APSIM system since its introduction.

Source: Holzworth et al. 2014.

Its soil models simulate the relevant processes occurring on and within the soil profile; these 
includes water infiltration and movement, evaporation, runoff and drainage, temperature 
variations, the cycling of nitrate, ammonium and other solutes (phosphorus), and soil organic 
matter decomposition (litter or residues).

APSIM’s animal models simulate cattle and sheep in agricultural systems, including their 
effects on crops and soils. Grazing of grain crops, both during the growing season and as 
residues, can be modelled. The return of nutrients to the soil as urine and faeces is explicitly 
modelled. 

Coupling models together to form larger “models” and then configuring each by specifying 
their input parameter values construct an APSIM simulation. A large set of toolboxes 
of biophysical and infrastructure models provide the necessary pieces to construct a 
representation of a single point in space. This single soil, climate or management construct 
has traditionally represented a field on a farm having a uniform soil and management. Every 
APSIM simulation must be represented as an XML document before it can be executed. The 

swim (Verburg et al., 1996b)

AusFarm

ozcot

grasp (Bell et al., 2008) 

AgPasture (Li et al., 2011)

oryza (Gaydon et al., 2012b)

dymex (Whish et al., 2014)

swim (Verburg et al., 1996b)

grazplan (Freer et al., 1997)

ozcot (Hearn, et al.,1994)

grasp (Ricket et al., 2000) 

DairyMod (Johnson et al., 2008)

oryza2000 (Bouman et al., 2012b)

dymex (Maywald et al., 2014)

apsim

apsim 7.6

1990

2014



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 17

most common way of building this document is via a graphical user interface, which enables 
models to be chosen from a set of toolboxes. 

3.2 

Remote sensing forecasts of crop yields are one of the major applications of remote sensing 
in agriculture, as schematized by Guerschman et al. (2016) in Figure 8 below. The scheme 
shows that the modelling of the remote sensing signal into surface or canopy parameters 
can meet the needs of various applications.

Figure 8. Applications of remote sensing in agriculture. 

Source: Guerschman et al. (2016).

The remote sensing modelling of crop yield can be done with or without a physiological model. 
Forecasts based on remote sensing are usually statistical models that link past and current 
season indices, whereas the use of remote sensing indicator as input variables into crop 
simulation models simply enrich the potential of such models by providing cheaper and gridded 
information.
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The integration of remote sensing indicators into crop physiological models was boosted by 
the progresses made in terms of space data collection. A simple example is the rephrasing 
of the modelling proposed by Monteith in the 1970s, in which parts of the variables are 
derived from the imagery. Recalling that the fraction of the Photosyntetic Active Radiation 
(fPAR = APAR/PAR = AbsorbPAR/IncidentPAR)) is exponentially related to the LAI, which is 
itself linearly related to the Normalized Difference Vegetation Index (NDVI), one can rewrite 
Monteith’s daily DMP equation as DMP=PAR*fPAR*RUE, where the RUE is crop specific 
and a function of local conditions (for further details: Eerens, 2004). The yield is then defined 
as the product of a harvest index and the sum of the daily DMP during the growth period. 
Another example may be found in Enenkel (2015), where the Enhanced Combined Drought 
Index is based on satellite-derived rainfall, soil moisture, land surface temperature and 
vegetation status. Likewise, the estimation of evapotranspiration has been greatly simplified 
pursuant to the availability of satellite data (land surface temperature). The main methods and 
algorithms (such as SEBAL – Surface Energy Balance Algorithm for Land – and METRIC – 
Mapping Evapotranspiration With Internalized Calibration) used in the energy balance formula 
are reviewed by Colaizzi (2012) and Liou et al. (2014). Currently, FAO issues the Agriculture 
Stress Index System (or ASIS; VanHoolst, 2016), which is based on a vegetation heat index 
derived from the NDVI and soil temperature (BT4: Brightness temperature) obtained from 
METOP Advanced Very High Resolution Radiometer (AVHRR) (at a resolution of 1 km). Its 
use in the prediction of wheat yield in Syria has been recently reported as explaining 88 
percent of the variability in a time series of 20 years.

A more complex approach consists in using remote sensing indicators, such as LAI, soil 
moisture or the crop development stage for mechanistic or functional model initialization 
and calibration. The use of Soil Moisture Active and Passive Mission (SMAP) data in the 
DSSAT model is shown, by El Sharif et al. (2015), to improve wheat yield forecasts in the 
United States of America. The strategy is to force the model to output crop yields that are 
compatible with the daily 10-km resolution soil moisture provided by the National Aeronautics 
and Space Administration (NASA), to obtain more reliable modeling outputs. Also using 
the DSSAT model, the Mahalanobis National Crop Forecast Centre in India relies on Indian 
Synthetic Aperture Radar (SAR) satellite (RISAT) to predict rice yield using the derived image 
crop mask, planting dates and biomass, taking advantage of the good relation between the 
height of rice plants and SAR backscattering (Choudhury et al., 2007). Another example is the 
prediction of wheat and sorghum yields in Australia. Using an agro-climatic model based on 
soil characteristics, water availability and evapotranspiration derived from the APSIM model, 
the predictions are improved using the climactic trimestral forecasts of the NOAA Southern 
Oscillations Index phase system (Potgieter et al., 2005).

The forecast solution based on remote sensing simply relates a time series of crop yields 
to vegetation indices (such as the NDVI and the Enhanced Vegetation Index, or EVI) through 
empirical regression analysis (i.e. a statistical model). In function of field sizes, the most 
relevant sensors today are the AVHRR (1 km), MODIS (500 m), LANDSAT 8 (30 m) and 
SENTINEL 2 (10 m) and 3 (300 m). When applied using a crop mask, the relationship between 
CNDVI (Crop specific NDVI) and biomass holds, especially in low-yield regions where the 
NDVI-LAI curve rarely reaches saturation. 
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Meroni et al. (2016) give recent examples of yield prediction as a function of NDVI temporal 
profiles for cereals in Algeria, Morocco and Tunisia, with an RMSE between 160 and 690 kg/
ha. Rembold et al. (2013) review the results obtained in Niger, Burkina Faso and Egypt and 
note that, if crop areas are unknown, authors usually attempt to predict production instead 
of yield. 

An improved solution is to complement the exploratory variables of the regression with other 
type of remote sensing information, such as satellite-derived surface temperature, rainfall, 
solar radiation or soil moisture. Using raw data (rainfall, as do Rojas et al. 2011; or radiation, 
as Lobell, 2013 and Durgun, 2016) or derived indicators (GDD-adjusted maximum NDVI, as do 
Franch et al. 2015; or FAOCWSB – Water Supply Balance – and Eta, as done by Rojas, 2007), 
yield predictions can usually be improved. For example, using MODIS data, for China, Franch 
et al. announce a precision of 6 percent for their final winter wheat yield and production 
forecasts computed two to three months prior to harvest. 

Finally, the integrated Canadian crop yield forecasts are worthy of note (ICCYF, Chipanshi et 
al., 2015). These forecasts began in September 2016 to replace field-based crop cutting as 
the official and sole September forecasts for 15 crops. Weekly AVHRR NDVIs are used as 
competing predictors against agro-climatic variables (GDD, water deficit index, crop sowing 
dates) in a robust least-angle regression leading to a mean absolute prediction error of 
approximately 20 percent for spring wheat at agricultural census region level.
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Uncertainty in modelling 
(AgMIP and MACSUR)

For several years, the authors of models and forecasts themselves have sought to evaluate 
the accuracy of their crop yield forecasts. For example, the relative percentage errors of 
the MARS 2014 forecasts were announced to lie below 5 percent for soft wheat, durum 
wheat, grain maize, potato and sunflower (respectively, at -4.3 percent, -2.4 percent, -3.8 
percent, -3.0 percent and -1.0 percent) at the EU-28 level (Leo, 2016). Likewise, Chipanshi 
(2015) evaluated the Mean Absolute Percentage Error (MAPE) of the September crop yields 
as indicated by season forecasts in Canada; as noted above, since 2016, these are the 
only official forecast. At provincial level, MAPE ranged from 7 percent to 16 percent, from 
7 percent to 14 percent, and from 6 percent to 14 percent for spring wheat, barley and 
canola respectively; at national level, accuracies of 8 percent, 5 percent and 9 percent were 
observed for the three crops respectively.

Wand et al. (2005) published interesting results of a sensitivity analysis applied to the EPIC 
model at field level, simulating the corn yields obtained in a field experimental station 
located in the United States of America. Applying the Generalized Likelihood Uncertainty 
Estimation (GLUE) and Fourier Amplitude Sensitivity Test (FAST) methodologies (Saltelli, 
2000), it was found that, within the parameters analysed, only available water, temperature, 
RUE and harvest index main effect and interaction were influential; and it was possible to 
optimize the model’s parameters. Liu et al. (2014) examined parameter sensitivity at regional 
level in China using EPIC for winter wheat yield modeling; the Extended Fourier Amplitude 
Sensitivity Test (EFAST) was used for first- and second-order sensitivity estimation. Among 
the model’s 22 parameters, three main effect parameters (base temperature, available water 
and harvest index) explained 80 percent of the variability in the forecasted yields and more 
than 90 percent thereof, when interactions including global sensitivity were performed. The 
importance of accurate data on these influential variables is therefore clear.

4
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Major progresses were recently achieved in the quantification of model uncertainty within 
the AGMIP initiative (Rosenzweig et al., 2014; Eliot et al., 2015). Although the objective of 
the activity was to quantify the uncertainty in estimating the effects of global change on crop 
yield, it provides remarkable information on the uncertainty surrounding yield simulation for 
current years. The main priorities were established as simulation of crop yield and water 
use (if irrigated) of maize, wheat, rice (the major food energy intake) and soybeans (the 
major animal feed) under three configurations of model inputs: best guess of modellers, 
harmonized inputs, and harmonized inputs with no nitrogen stress. The results were to be 
provided in a gridded format, for the entire world.  

As shown in Figure 9, the simulated maize yields (seven models) may differ significantly from 
the observed values, thus demonstrating that even after the input data has been harmonized, 
model outputs may differ significantly from one another and with regard to the true values. 
On a rough visual interpretation, the Pegasus and LPJmL models certainly appear to be more 
relevant for Africa than the Image model. 

Another way to consider model uncertainty is to examine the influence of changing weather 
conditions. Figure 9 compares – for wheat, maize, rice and soybean – the future influence of 
climate change on world-level crop production (expressed as a percentage of changed versus 
current yields). It may be seen that for all crops, the range of variation is unsatisfactory, going 
from negative to positive values (although the majority of value are negative) and displaying 
a range of variation of almost  100 percent. This demonstrates that it is easier to “predict 
the past” than the future, and that in science, any model is correct until it fails the tests to 
which it is put.
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Figure 9. �Average Global Gridded Crop Model (GGCM) maize yield (rescaled to the 
common global average of historical yield in G) for various models from 
1980 to 2010. 

Source: Rosenzweig et al. (2014). 
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Figure 10. �Relative change (% from ensemble median) in dekadal mean production for 
various GGCM, with and without effects of CO2 for maize, wheat, rice and 
soybean (for Representative Concentration Pathway 8.5). 

Source: Rosenzweig et al. (2014).

Readers interested in exploring the uncertainty associated with rice yield modelling in Asia 
may find an interesting comparison of thirteen rice models in Hasegawa (2015), who found 
that individual models failed to consistently reproduce both experimental and regional yields, 
that uncertainty was greater at the warmest and coolest sites, and that the variation in 
yield projections was greater among crop models than the variation resulting from 16 global 
climate model-based scenarios.

Müller et al. (2016) present the results of the intercomparison of the fourteen models of the 
GGCMI exercise. With regard to the models capacity to reproduce the past (1980–2012), 
they examined the correlation between FAOSTAT yield statistics and the models’ forecasts. 
Depending on the model, the correlation lies between 0.26 and 0.89 for maize, 0.25 and 0.67 
for wheat, 0.10 and 0.60 for rice, 0 and 0.64 for soybean.

From the abovementioned AGMIP-related publications, the consensus seems to tilt in 
favour of the so-called “ensemble” solutions recommending the use of median or average 
outputs from several models (Martre et al., 2014). In addition, attention must be paid to 
the recommendations formulated by Grassini et al. (2015) on model tuning and data quality 
checks: “[i]n summary, a robust approach to simulate accurate crop yield potential and 
estimate yield gap requires: (i) input data that meet minimum quality standards at the 
appropriate spatial scale, (ii) agronomic relevance with regard to cropping-system context, 
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(iii) proper calibration of crop models used, and (iv) flexibility and transparency to account 
for different scenarios of data availability and quality”. Another interesting publication is 
that authored by Lobell et al. (2007), who study and quantify the structure of yield forecast 
variability in function of time and spatial dimensions. Wallach et al. (2016) compare fixed 
and random effects in the Generalized Least Square modelling of the forecast errors, and 
favour the use of random effects to quantify the uncertainty associated with the squared 
bias and variance, and to separate the components linked to model parameters (such as 
genotype) and model structure (in this case, DSSAT and APSIM). In an example involving rice 
in Sri Lanka, a field-level development stage RMSE of prediction of 10 days was observed 
(MSEPrandom=100 days2), the components of which were 7 days2 for model parameters, 15 
days2 for model structure, and 86 days2 for bias.
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Recent advances 
When discussing the key events and drivers to have influenced the development of agricultural 
system models since 2010, Jones et al. (2015) identifies these as the increasing successes 
achieved in combining crop models and molecular genetics, the private sector’s rising interest 
in agriculture models, and the increasing integration of food security challenges. One of the 
major advances in the field of crop modelling consists in the emergence of collaborative 
efforts among research institutions (largely fostered by the AGMIP and MACSUR), interaction 
between the private and the public sectors (like in CIMSANS), and the connection among 
climatic, biophysical and economic models. Gustafson et al. (2014) present a study resulting 
from the sharing of modelling knowledge from the academic world and the data obtained 
in private-sector variety trials. Messina et al. (2011) present a case of drought resistance in 
maize in which models linking phenotype and genotype are enriched with growth relations or 
parameters from research on crop growth modelling. Nelson et al. (2013) illustrate the power 
of integrating climatic, biophysical and economic models.

Among the recent advances made in crop simulation models, the most noteworthy are (1) 
the possibility to model intercropping in APSIM, and (2) the multi-year rotation cropping and 
pest/disease management in the DSSAT. In addition, simplified versions of models have 
been released, mainly to reduce computational complexity if it is sought to make decisions 
on well-delimited questions (Dzotsi et al. 2013). 

In a STARS landscaping report, McKenzie et al. (2016) analyse how smallholder farmers in 
low-income countries could overcome the barriers to taking part in the digital revolution in 
agriculture, and refer to the recent advances made in crop yield modelling thanks to remote 
sensing. Atzberger (2013) reviews the progress achieved in remote sensing and covers five 
different applications: biomass and yield estimation, vegetation vigour and drought stress 
monitoring, assessment of crop phenological development, crop acreage estimation and 
cropland mapping, and mapping of disturbances and land use/land cover changes.  

5



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 28

Rembold et al. (2013) review the methods to estimate biomass and yield with low-resolution 
imagery. Their findings on the new developments in this field are summarized below:

•	 The LAI and the fPAR are operationally derived from vegetation indices (NDVI, the 
Soil Adjusted Vegetation Index – SAVI – and EVI) and new computational techniques 
have been applied to MODIS data (Myneni, 2002) and to SPOT-Vegetation and 
PROBA-V data (artificial neural networks; see Verger et al. 2015).

•	 It is also possible to quantify the biomass of crop residues after tilling, senescent 
matter and litter (non-photosynthetic vegetation; see Guerschman, 2015) using the 
lignin/cellulose reflectance at a spectral wavelength of 2.0-2.2 µm.

•	 As presented by Hunt et al. (2013), a large number of spectral indices have been 
defined to derive the leaf chlorophyll content. To predict leaf nitrogen status, the 
triangular chlorophyll index (TCI) based on green, red and red-edge bands can be 
used with satellites such as Sentinel 2 or Rapideye. However, as red-edge bands 
are not available on Landsat 8, only the visible-band index called the triangular 
greenness index (TGI) can be used with this sensor. 

Figure 11. �List of remote sensing indices related to vegetation cover and chlorophyll 
content.

Source: Hunt et al. (2013)
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Chlorophyll fluorescence (F760) has long been identified as being related to photosynthesis 
intensity because approximately 1 percent of the absorbed photons are reemitted into the 
wavelength (760 nm). Rossini et al. (2014) have shown that the estimation of DMP usually 
based on RUE and the NDVI (as proxy of fPAR)  is improved if F760  is used as  proxy of RUE in 
the equations They observe a coefficient of determination greater than 90 percent for rice and 
alfalfa. Guanter et al. (2014) compare the relation between official statistics and model-predicted 
values in Europe and in the United States of America. Using Sun-Induced Fluorescence (SIF)  
from GOME-METOP (at 0.5° ≈ 50km), they observe a better fit for SIF-derived productions than 
for complex process-based models. Mohammed et al. (2014) detail the potential of the SIF 
derived from Sentinel 3. Using the SCOPE model, they obtain accurate results (+/- 10 percent) 
for wheat productivity, as well as for water and nitrogen deficits.

When estimating yields with remote sensing data, the first step consists in determining 
the area of interest in which the crops are located. Crop-specific current-year maps would 
be ideal to meet this purpose; however, outside the United States of America and Canada, 
these instruments are rarely available. The remaining solution rely on the use of published 
global cropland masks (Congalton, 2014) or on a more recent approach proposed by Kastens 
et al. (2013), according to which the specific crop mask is created by computing, at pixel 
level, the correlation between a time series of official yield statistics and metrics derived 
from (AVHRR) satellite imagery. Only those pixels showing a good correlation are kept for 
the crop mask.

To predict crop yield, Lobell et al. (2015) propose an operational solution called “a scalable 
Satellite-based Crop Yield Mapper (SCYM)”, which makes use of open-access archives, 
and near-real-time satellite imagery (MODIS, LANDSAT, SENTINEL), as well as of the 
interface/cloud computing provided by Google Earth Engine. Essentially, the SCYM runs a 
process-based model (APSIM or DSSAT) on historical data (on yields, environment, genotype 
or management) in various sites, to produce site-, date- or crop-specific growth indicators. 
Making use of the published parameters linking these indicators to satellite imagery (e.g. 
LAI versus VIs and SAR-backscattering, or water availability versus the stress index), 
pseudo-observations may be generated. Finally, a linear model linking yields to weather 
and multi-date remote sensing indices (main effect and order 1 interaction) are adjusted. 
The regressions were adjusted using four types of weather data (June-August rainfall 
and solar radiation; July vapour pressure deficit; August maximum temperature; and the 
Green Chlorophyll Vegetation Index, or GCVI, from two dates (early and late in season). The 
computation was performed at pixel level for pixels belonging to the USDA-Crop Data Layer 
masks. The results were benchmarked in various ways: at state level, the correlation between 
USDA yields and the predicted yields explained 80 percent of the variance: at field level, that 
between the Risk Management Agency’s insurance-declared yields and the predicted yields 
explained 33 percent of the variability. In comparison, single-date GCVI only explained 28 
percent of the variation (∂r=0.05).
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Specific observations on rice, 
corn, wheat and soybean

Recently, Ray et al. (2015) considered the influence of inter-annual climate variations on 
crop yields in different regions. On average, 30 percent of the variability experienced in 
the last 30 years may be explained by variations in temperature and/or rainfall; however, 
in the less productive zones, this percentage may reach 60 percent. Among the crops of 
wheat, rice, maize and soybean, rice is the least weather-dependent. Only 53 percent of rice 
areas showed a significant correlation, with a year-to-year yield variability of 0.1tonne/ha; 
precipitation variability is more explanatory of the variability in South Asia, and temperature 
variability of that in Southeast and East Asia. To the contrary, maize showed a significant 
correlation on 70 percent of the planted areas, for a variability of 0.8 tonnes/ha, 41 percent of 
which may be explained by the climatic conditions. Temperatures explained the yield in cold 
countries (Canada) as well as in warmer ones (Spain).

6
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Figure 12. �Coefficient of variation of crop yields over a 30-year period for (a) maize, (b) 
rice, (c) wheat and (d) soybean.

Source: Ray et al. (2015)

Past activities on crop yield modelling have taken place in the context of international 
initiatives such as AGMIP, MACSUR and the Wheat Initiative Crop Model Working Group ]. 
Although their motivations were linked to the global-scale effects of climate change, they 
were certainly appropriate at field scale for model improvement and evaluation, because 
the process-based crop models used globally are simply classical field-level growth models. 
Most studies targeted the simulation of crop response to changes in CO2 concentration, 
extreme temperatures, rainfall, tropospheric ozone concentration and pests and diseases 
(Müller and Eliot, 2015).

The effect of temperature
Asseng et al. (2015) tested 30 wheat models against experimental data to estimate the 
effect of mean temperatures in the range of 15°C to 32°C. Wheat production is expected to 
drop by 6 percent for each Celsius degree of increase in temperature, and yield variability is 
expected to increase in both space and time for mean temperatures above 22°C. Models 
shows that for the same mean temperature, an increased temperature before anthesis 
(which would favour stem elongation and advanced anthesis date), followed by a lower 
temperature during grain maturation (which would favour a longer grain-filling period) foster 
a higher yield, while the opposite scenario would induce a reduced yield (with a difference of 
17 percent in final yield). The models with a heat stress routine clearly performed better for 
average temperatures above 29°C.
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Frost damage is a well-known limiting factor in the Northern hemisphere. Recently, 
however, the heat stress undergone by cereals (including rice) during the reproductive 
period has drawn the attention of researchers, because heat stress accelerates the overall 
plant senescence and grain-filling process, thus resulting in an earlier maturity date and a 
shorter reproductive period. Due to the poor performance of major models such as APSIM 
or CERES, several routines (all heat-stress-related) have been developed for rice, wheat, 
soybean, sunflower and peanuts. Liu et al. (2016) looked at the post-heading duration due to 
heat stress for wheat in 160 agrometeorological experimental stations in China from 1981 to 
2010. The performances of four widely used temperature response routines from four wheat 
models (APSIM-Wheat’s Bilinear routine; CERES-Wheat’s Trapezoidal routine; GECROS’s 
Beta routine; and WheatGrow’s Sin routine) were evaluated using the WheatGrow model. 
Because all routines failed to predict the reduction in duration, the first three models were 
successfully modified by including an additional heat thermal effect (HTE) quantified with 
heat degree days (HDD) and GDDs in the thermal effect on wheat development. All routines 
with the HTE function predicted shorter post-heading duration under heat stress, which 
agreed with the observations, and remarkable improvements in simulation accuracy were 
observed (RMSE = 2.3 days). 

Limiting their study to maize, Bassu et al. (2014) used a set of 23 models to study yield 
variation due to increased temperature and CO2 concentration in Brazil, France, the United 
Republic of Tanzania and the United States of America. Forecasted yield decreased by 0.5 
Tonnes/ha per Celsius degree increase and was boosted by 7.5 percent on average when 
CO2 concentration was shifted from 360 to 720 μmol mol-1 CO2. 

The effect of rainfall
Asseng et al. (2016) have screened the use of accurate 10-day advanced rainfall forecasts 
for anticipating rain-fed wheat sowing dates, and management decisions on late nitrogen 
fertilization and fungicide spraying in Australia. Interestingly, the potential gains are converted 
in A$/ha, corresponding to the recent trend of using crop simulation models to improve 
farm management, by providing farmers with a range of decision management options (for 
an average farm size of 2 000 ha). The APSIM model was applied on a 25-year historical 
time series. Depending on soil type and rainfall at each specific location, the gross margin 
obtained from dry-sowing varied between A$/ha 10 and 100 per ha, reaching A$/ha 160 ha 
when associated with late nitrogen and anti-rust fungicide applications. 

The effect of CO2 concentration
In the context of climate change, the initial statement that increased CO2 concentration had 
a positive effect on crop yields was subsequently challenged. O’Leary et al. (2015) base their 
analysis of wheat biomass at anthesis and final yield on the modifications of the RUE and TE 
for six crop growth simulation models (including APSIM, SALUS and CROPSYST). Although 
not all models adequately reproduce the initial growth, all models correctly reflected the 
experiment’s final results. At the increased concentration (550 versus 365 μmol mol-1 CO2), 
the final yields were increased by 21 to 23 percent (in both dry and wet conditions) and water 
use reduced by 20 mm, leading to a 30 percent increase in water use. The simultaneous 
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increase of temperature of 1°C reduced the yield increase to some extent, probably due to a 
reduction of the period for grain filling.

Li et al. (2016) examined the rice yield under increased CO2 concentration and air temperature. 
Compared to observation data, models generally tended to overestimate the positive effects 
of CO2 concentration and underestimate the negative effects of increased temperature.

The effect of ozone (O3)
Although ozone is considered to affect stomatal conductance, photosynthesis efficiency, leaf 
ageing and yield, limited work has been done to add an O3 module to crop growth models. 
Recently, WOFOST (Capelli et al., 2016) was adapted and tested for wheat (high sensitivity) 
and barley (low sensitivity) in Germany and Spain. For O3 concentrations ranging from 20 to 
60 ppb, effects on wheat yields reaching 30 percent were found in conditions not constrained 
by water stress, and of 10 percent for water-limited (rain-fed) conditions. In addition, Ghude 
et al. (2014) examined O3 influence on cotton, soybean, rice and wheat crops in India. Using 
the AOT40 metrics proposed by Hollaway et al. (2012), they estimate the expected cereals 
production reduction in India at 9.2 percent.

Intercropping
Carlson et al. (2016) incorporated maize and bean intercropping in the CROPSYST model 
considering the light interception shares among the two crops, as well as their water and 
nitrogen intakes in non-limited and limited conditions. The simulation results compared to 
observations for 2015 in Kenya show a good fit for green area index and biomass for both 
crops, confirming the advantage of intercropping for yield maximization. The STICS model 
was also adapted to enable simulations in cases of arable intercropping. Bocar Baldé (2016) 
illustrates its application to the maize and pigeon-pea crops in Brazil and millet and cowpea 
crops in Senegal.

The effect of pests and diseases
It is currently estimated that the effect of pests and diseases reduces actual global food 
production by 16 percent, such that modelling such factors in agricultural crop systems is 
one of the current priorities. Readers interested in the state of the art on merging pest and 
disease models with crop models should refer to the proceedings of the 2015 workshop 
on “Advancing Pest and Disease Modeling” held by the University of Florida in Gainesville, 
Florida, United States of America from 23 to 25 February 20151. Boote et al.  (2015) summarize 
the models involved (DSSAT, CROPGRO and CERES), the crop concerned (maize, soybean, 
millet and peanut) and the parameters modelled. 

The current situation is that all models require the entry of pest damage (as scouting data) 
to enable ex post facto evaluation of yield losses to pests in research experiments. In the 

1	 http://conference.ifas.ufl.edu/pest/index.html.
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future, the objective should be to create simple simulators of disease damage as a function 
of temperature, humidity, rainfall, crop stage, genetics and fungicide efficacy. Coupled with 
the crop model, this would enable predicting the effects of disease on crop yields without 
the need to input disease damage. 

Bregaglio et al. (2015) retained an alternative approach, favouring the development of 
modular routines that are sufficiently generic to cover various pathogens and crops that 
could be integrated in more than one crop growth model. The four software components 
proposed cover the production of primary inoculum and the occurrence of primary infections 
(InoculumPressure), the development of secondary infection cycles during the cropping 
season (DiseaseProgress), the interactions between epidemic development and crop 
physiological processes (ImpactsOnPlants) and the impact of agricultural management 
practices on disease development (Agro-managementDisease), quantifying the disease effect 
on LAI reduction and RUE reduction (CERES, CROPSYST, STICS, WARM, DSSAT, APSIM) or 
alternatively CO2 assimilation (SUCROS, WOFOST, ORYZA). Willocquet et al. (2008) provide 
details on the modelling of LAI and RUE reductions in WHEATPEST and RICEPEST. The 
results of the simulations were successfully compared to field measurements for rice blast 
and wheat brown rust in China and Europe using the WOFOST and WARM models. 

AGMIP has recently launched its Pests and Diseases Model Intercomparison Project, the 
first workshop regarding which took place in Toulouse, France in October 2016. During said 
workshop, it was resolved to set up an ad hoc working group.

Analysis of the yield gap
The compilation of the Global Yield Gap Atlas (or GYGA; see www.yieldgap.org) provided an 
opportunity to express recommendations to enhance the comparability of the outputs of 
crop models. As shown in Figure 13, the process consists in aggregating local crop growth 
model runs up to the regional or national level.

Figure 13. Global yield gap protocol for data aggregation. 

Source: van Bussel, L.G.J. (2015).



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 36

As illustrated by Gobbet et al. (2016) when estimating wheat exploitable yield for wheat 
in Australia (with additional exports estimated at US$ 3.2 billion), the GYGA protocol 
recommends paying attention to the quality of input data (crop mask, climatic zones based 
on annual GDDs, temperature seasonality and an aridity index, weather stations 200 km 
apart in operation for 15 to 20 years, unbiased soil sample location) and the local suitability 
of the selected crop model to forecast the water-limited yield. The same method was applied 
for rice (van Oort et al. 2015) on eight African countries (Burkina Faso, Egypt, Ghana, Mali, 
Nigeria, United Republic of Tanzania, Uganda and Zambia) to estimate their yield gap using 
ORYZA2000 (which was adapted to correctly estimate heat-induced sterility in semi-arid 
zones) and concluded that the actual rice areas could not lead to national self-sufficiency. In 
the same way, with the DSSAT model, van Bussel et al. (2015) estimated the yield gaps for 
soybean (32 percent), maize (41 percent) and wheat (41 percent) in Argentina. The countries 
currently included in the atlas account for 60, 58, and 35 percent respectively of the global 
rice, maize and wheat production. In addition to grains (maize, rice, wheat, sorghum and 
millet), soybean, potato and sugarcane have been added, reaching coverage of 43 countries.
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Role of the private sector: 
insurances, start-ups, industry 
and foundations

In recent years, the interest of the private sector for crop yield modelling has been growing. 
Bearing smallholder farmers in mind, the Bill & Melinda Gates Foundation has financed 
several projects relating to this theme (e.g. STARS, NEXTGEN and GEOSHARE). The 
major actors are very close to the leaders of the AGMIP and the main outcome has been a 
special 2016 issue of the Agricultural Systems academic journal, entitled “Next-generation 
agricultural system data, models and knowledge products”. Various papers recommend 
how such modelling should evolve, concentrating efforts on data quality and free access, 
software modularity, the gaps (pest and disease damage evaluation) and the need for simple 
mobile apps for extension advisors and large farms. The process also envisages integration 
of a socioeconomic module.

The food industry has structured its cooperation by establishing initiatives such as the 
international Life Sciences Institute (ILSI) and CIMSANS, building and sharing joint databases 
such as the AgTrials database, maintained by the Centro Internacional de Agricultura Tropical 
(CIAT), and the World Food Life Cycle Assessment database (WFLCAB). The food industry’s 
interest in understanding the preferences of future customers – which enables industry 
operators to adapt their offer and plan what, where and how to produce – prompts its 
exploitation of the farmer data that may be gleaned from contractual agreements relating to the 
certification and purchase of raw products. Its strategy consists in establishing connections 
with the academic sector to identify the operational models that could be incorporated in 
their usually basic models. Agro-chemical companies from the United States of America and 
the European Union have also identified crop yield modelling as one of the components of 
the precision farming that they wish to offer to foster their business expansion. Their strategy 
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has usually been to buy over start-up companies, which enables them to gain time in terms 
of industry innovations.

Crop insurance companies are active in crop yield modelling during risk evaluation (premium 
calculation) and during claims liquidation. In 2011, the worldwide agricultural insurance 
premium reached US$ 23.5 billion. North America held 55 percent of the market share, 
Europe 18 percent, Asia 22 percent, Oceania 0.8 percent and Africa 0.5 percent. In Asia, 
China held 45 percent of the market. To clarify why a priori risk evaluations are necessary, 
suffice it to mention that the 2012 drought in the United States of America cost the crop 
insurance program over US$ 17 billion; and that in China, the 2013 premiums and claims 
arising from the country’s crop insurance program amounted to CNY 31 and CNY 22 billion 
respectively. 

Insurers and reinsurers must therefore calibrate their contractual terms with historical data, 
modelling technological trends as well as climatic effects (including extreme events), and 
merge these with the price models driving the current year’s crop hectares and management 
practices. As an example, the AIR Worldwide suite of software (Vergara et al., 2014), adopted 
by Munich Re in 2013, will be examined. AIR Worldwide monitors crops such as corn, rice, 
wheat, soybean and cotton for damages due to frost, wind, drought and flood. The AIR 
approach consists in modelling the effects of climate through a crop computed through an 
Agricultural Weather Index (AWI) specifically per country, on the basis of daily temperatures 
(minimum and maximum, on a 50-km grid) and precipitations (on a 25-km grid). The main 
indicators derived are the GDDs and evapotranspiration. In addition, soil information allows 
adding outputs on runoff, soil moisture and plant available water capacity. The historical 
data consist of observed county yield, planting dates and phenological stages. Historical 
and current wind records are also used. Although no detail is shared on the exact model 
equation(s), Zuba et al. (2005) describe it as follows: “[c]ompared to other crop growth models, 
the underlying methodology for the AWI favors simpler parameterization of yield-related crop 
growth and crop damage. Calibration of the model is done by adjusting a small number (3 to 
4) coefficients used to optimally scale the effect of different weather perils on crop stand.” 
Therefore, it may be concluded that although no part of the classical complex crop growth 
model is adopted, with the exception of radiation efficiency and energy repartition, the major 
processes driving the biomass formation are included. 

At the level of evaluating insurance losses, the first aspect to examine is the type of contract. 
In many developing countries, the work required to evaluate damages has been avoided 
by favouring index-based insurances (Gommes et al., 2013), in which farmers’ indemnities 
are based only on trigger points of meteorological observations, such as precipitations or 
minimum/maximum temperatures. If the contract covers revenues instead of production, the 
maximum commodity price between harvest time and contract signature date is generally 
incorporated in the damages evaluation. If the claims are based on individual production 
losses, the fieldwork associated with the damage quantification (yield/area) may be very 
costly compared to the amounts claimed, and alternative model-based methods have been 
identified (de Leeuw et al., 2014). If official crop insurance systems have adopted technology, 
the private sector has been reluctant and few references are available. Hongo et al. (2015) 
report that due to low temperatures in 2003, 2.92 million Japanese farmers declared damages 
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to their insurance companies, which required 173 000 days of work from 84 000 assessors 
for an overall assessment cost of US$ 10 million. Working on rice, the authors adjust a 
regression model that links yield and spectral reflectance (NDVI and individual channels of 
SPOT and ALOS) to obtain RMSEs of 500kg/ha. Taking the example from 2003, they consider 
that the assessment cost could have been reduced by a factor of 20 if an approach based on 
remote sensing had been used.

The breeding sector has also begun to study crop growth models, seeking to extract 
from large-scale breeding trials the genetic parameters required to calibrate crop growth 
models. Hwang et al. (2015), Technow et al. (2015) and Lamsal (2016) provide an overview 
of the models’ integration and related problems. The traditional approach consists in fitting 
a statistical model for genotype-specific parameters (GSPs) versus genotype codes (+1/-1 
values), assuming that the crop simulation model is satisfactory. A more recent approach 
considers that gene markers enable definition of Quantitative Trail Loci (QTLs). These main 
factors and their interaction with the environment (which is weather-, site- and year-specific) 
allow for the estimation of CSM parameters through general mixed linear models. Among 
the models already studied, examples drawn from the DSSAT are presented for soyabean 
(CROPGRO), wheat and maize (CERES).

Farm decision systems have been the priority of many start-up companies and universities. 
Capalbo et al. (2016) provide an example of the data, models and knowledge products that 
are being developed to respond to the needs of farms and information to support policy 
decisions. They describe general features of these systems and the benefits they could 
provide to producers as well as research and policymaking. The authors present two models 
that could be used in farm decision systems: (1) a farm-level decision model and (2) a regional 
policy analysis tool. An application of these models to the adaptation of wheat systems in 
the Pacific Northwest region of the United States of America is used to illustrate the models 
and the way they could be linked to “big data” infrastructure. At farm level, they present the 
AgBiz logic software created by Oregon State University. Capable of coping with net revenue 
maximization and alternative management scenarios, the system relies on modules dedicated 
to climate indicators and metrics, financial aspects, environmental outputs. Unfortunately, no 
detail is given on the yield models retained. AgroClimate, another decision system, was 
developed by the University of Florida (Fraisse et al. 2006). Using DSSAT-CSM as a crop 
model, they monitor 16 crops to understand the influence of an excess or shortfall of water, 
and the effect of frost and diseases. The forecasts are improved by incorporating those 
made by the El Niño Southern Oscillation Multivariate Index (ENSO-MEI). The application 
is well documented in a workbook (http://agroclimate.org/workbook/AgroClimateWorkbook-
Print.pdf). Yield Prophet is a farm decision tool that was developed in collaboration with the 
Commonwealth Scientific and Industrial Research Organisation (CSIRO), using the APSIM 
model for wheat, barley, canola, sorghum and oats. In addition to yield outcome, it provides 
the expected maturity date and the actual water and nitrogen available to the plant; the 
software can be accessed on iPads or iPhones in the field, as well as integrated with existing 
farm technology. 

Monsanto’s Climate Field View platform may be considered to exemplify the type of product 
currently proposed by start-up companies to farmers in the United States of America. Recently 
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opened to external developers, it is used freely over 50 million ha in the United States of 
America and is expected to reach usage by paid premium service of over 200 million ha by 
2025. It relies on empirical models that are overfed with farmer information and planters 
and that combine equipment real-time data. Using extremely high-quality data in inputs, 
the yield forecasts obtained are of equally good value. Therefore, the general sentiment is 
that start-ups do not adopt the major crop models. As a final example, the Farmer Business 
Network (Meisner, 2017) issues US yield forecasts in advance to the (USDA) using the 
real-time information transmitted by the machinery processing the vast territory under their 
precision-farming-contract management; however, the crop yield models are regression 
equations that link historical yields, real-time field level information and current-year climatic 
conditions.
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Current recommendations
As noted by Holzworth (2014, 2015), in recent years, crop simulation models have evolved 
into agro-system simulation models. The changes initiated with the evolution of user needs, 
which shifted from pure scientific research to more technical goals linked to food security 
(yield gap analysis), climate change and policymaking regarding food, feed and bioenergy 
production. In general, most models began to include more crops and to interlink crop, 
pasture and livestock modelling. Software modularity favoured the reuse of routines by 
others and simplified the improvement of the modelled processes. Platforms were created, 
usually offering a user-friendly interface, which facilitated module selection and authorizing 
simulations of changes in management practices for assessing resource use and efficiency. 
Cloud computing and open-source protocols (for non-commercial applications) solve the 
major problems associated with the access to software and hardware. As a result, models 
such as APSIM are currently downloaded 100 times a month, and generate approximately 50 
scientific papers with up to 1 000 citations yearly. 

While more than 250 crop simulation models are currently available, the inclusion of certain 
topics remains at an embryonic stage. The inclusion of biotic factors in the model is still 
restricted to a minority of models the purpose of which is to evaluate yield reduction due to 
weeds, pests and diseases or yield increases induced by intercropping. The incorporation of 
the gene, environment and management (GxExM) variables has been boosted especially by 
the breeding industry; models usually produce the classical phenology and biomass outputs, 
but also information on economic return. Educated farmers and advisors now have access 
to downscaled models that can run on tablets. APSIM alone has led to the development of 
tools such as Yield Prophet, WhopperCropper and APSFarm. At the other extreme of the 
chain, international initiatives such as GEOGLAM (Leo et al., 2016) succeeded in federating 
most of the teams dedicated to early warning systems, giving real-time access to production 
forecasts as well as methodological support to those national teams willing to step into the 
process. It is important to realize that crop yields models are applied at very different scales, 
ranging from the field to the continent; however, the models involved have always started 
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development at the field level and resist upscaling generally by subdividing the larger region 
into subsets that are supposed to be homogeneous in terms of the relevant environmental 
and management variables.

Antle et al. (2015) present their views on the model design to be derived from selected user 
cases and the experience of the AGMIP project. Their vision proceeds with a shift from the 
research context to (commercial) decision-making tools, from pure biophysical modelling to 
a more economic analysis, from main-effect models to models incorporating interactions 
between the effects of CO2, O3, nitrogen and water, from a simple point model to the parallel 
run of a set of gridded point-based models, and from a single forecast to sensitivity and 
model uncertainty analysis. 

As occurred in 2003 with the special issue of the European Journal of Agronomy devoted 
to “Modelling Cropping Systems: science, software and application”, and in 2015 with the 
special issue of the Agricultural System special issue on “Towards a New Generation of 
Agricultural System Models, Data, and Knowledge Products”, which assessed the progress 
made over the last ten years on crop yield modelling and advocated for a recommended path 
of development, it may be expected that a new generation of modellers will issue a review 
issue in 2025 to detail that the current projects have evolved into reality and that further new 
goals may be proposed.
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FLEX/Sentinel-3 Tandem Mission Photosynthesis Study – final report. ESA/ESTEC externally 
contracted report. P&M Technologies Publication: Sault Sainte Marie, Canada. Available at: 
http://www.flex-photosyn.ca/Reports/PS-Study_FINAL_REPORT_Full_Report_(Public).pdf. 
Accessed 14 April 2017.

Morell, F.J., Yang, H.S., Cassman, K.J., Van Wart, J., et al. 2016. Can crop yield simulation 
models be used to predict local to regional maize yields and total production in the US corn 
belt. Field crops research, 192: 1–12.



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 49

Müller, C. & Elliott, J. 2015. The Global Gridded Crop Models Intercomparison: approach-
es, insights and caveats for modeling climate change impacts on agriculture at global scale. 
In A. Elbelhri (ed), Climate change and food systems: global assessments and implications 
for food security, trade. FAO Publication: Rome.

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J. et al. 2016. Global 
Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Paper 
presented at the 6th AgMIP Global Workshop, Montpellier, France. 28–30 June 2016. Avail-
able at: http://www.agmip.org/wp-content/uploads/2016/07/4.-160628_ggcmi_evaluation_
agmip_gw6_mueller.pdf. Accessed 14 April 2017.

Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J. et al. 2002. Global prod-
ucts of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Re-
mote Sensing of Environment, 83: 214–231. 

Nelson, G.C., H. Valin, R.D. Sands, P. Havlik, H. Ahammad, D. et al. 2013. Climate change 
effects on agriculture: Economic responses to biophysical shocks. Proceedings of the Na-
tional Academy of Sciences 111(9): 3274–3279.

O’Leary, G.J., Cristy, B., Nuttall, J., Huth, N.,  Cammarone, D. et al. 2015. Response of 
wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 enrichment 
(FACE) experiment and modeling in semi-arid environment. Global Change Biology, 21: 
2670–2686.

Potgieter, A., Hammer, G., Doherty, A. & de Voil, P. 2005. A simple regional-scale model 
for forecasting sorghum yield across North-Eastern Australia. Agricultural and Forest Mete-
orology, 132: 143–153. 

Potgieter, A., Lobell, D., Hammer, G., Jordan, D., Davis, P. & Brider, J. 2016. Yield trends 
under varying environmental conditions for sorghum and wheat across Australia.  Agricul-
tural and Forest Meteorology, 228: 276–285.

Rana, S.S. & Rana, R.S. 2014. Advances in crop growth and productivity. Publication of the 
Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India. 

Rembold, F., Atzberger, C., Savin, I. & Rojas, O. 2013. Using Low Resolution Satellite Im-
agery for Yield Prediction and Yield Anomaly Detection. Remote Sensing, 5: 1704–1733.

Ray, D.K., Gerber, J.S., MacDonald, G.K. & West, P.C. 2015. Climate variation explains a 
third of global crop yield variability. Nature Communications, 6: 5989.

Rembold, F., Atzberger, C., Savin, I. & Rojas, O. 2013. Using Low Resolution Satellite Im-
agery for Yield Prediction and Yield Anomaly Detection. Remote Sensing, 5: 1704–1733.



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 50

Rojas, O. 2007. Operational maize yield model development and validation based on remote 
sensing and agro-meteorological data in Kenya. International Journal of Remote Sensing, 28 : 
3775–3793.

Rojas, O., Rembold, F., Delincé, J. & Léo, O. 2011. Using the NDVI as auxiliary data for rapid 
quality assessment of rainfall estimates in Africa. International Journal of Remote Sensing, 
32(12): 3249–3265. 

Rosenzweig, C., Elliott, J., Deryng, D. et al. 2014. Assessing agricultural risks of climate 
change in the 21st century in a global gridded crop model intercomparison. Proceedings of 
the National Academy of Sciences of the United States of America, 111: 3268–3273. 

Rossini, M., Alonso, L., Cogliati, S.,  Damm, A.,  Guanter, L. et al. 2014. Measuring 
Sun-Induced Chlorophyll Fluorescence: an evaluation and synthesis of existing field data. 
Paper presented at the 5th International Workshop on Remote Sensing of Vegetation Fluo-
rescence, Paris. 22–24 April 2014

Saltelli, A., Chan, K. & Scott, E.M. (eds). 2000. Sensitivity Analysis. John Wiley and Sons: 
Chichester, U.K. 

Technow, F., Messina, C.D., Totir, L.R. & Cooper, M. 2015. Integrating Crop Growth Mod-
els with Whole Genome Prediction through Approximate Bayesian Computation. PLoS One, 
10(6): e0130855. 

Thenkabail. P.S. 2010. Global Croplands and their Importance for Water and Food Security 
in the Twenty-first Century: Towards an Ever Green Revolution that Combines a Second 
Green Revolution with a Blue Revolution. Remote Sensing, 2(9): 2305–2312. 

Van Bussel, L.G.J., Grassini, P., Van Wart, J., Wolf, J. & Claessens, L. 2015. From field to 
atlas: Upscaling of location-specific yield gap estimates. Field Crops Research, 177: 98–108. 

Van Hoolst, R., Eerens, H., Haesen, H., Royer, A., Bydekerke, L., Rojas, O., Li, Y. & Ra-
cionzer, P. 2016. FAO’s AVHRR-based Agricultural Stress Index System (ASIS) for global 
drought monitoring. International Journal of Remote Sensing, 37(2): 418–439.

Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell P. & Hochman Z. 2013. 
Yield gap analysis with local to global relevance – A review. Field Crops Research, 143: 4–17. 

Van Oort, P.A.J., Saito, K., Tanaka, A., Amovin-Assagba, E. & Van Bussel, L.G.J. 2015. 
Assessment of rice self-sufficiency in 2025 in eight African countries. Global Food Security, 
5: 39–49. 

Vergara, O., Wang, H. & Zuba, G. 2014. Agricultural risk modelling to improve market infor-
mation systems in developing countries. Cahiers Agricultures, 23: 310–316.



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 51

Verger, A., Baret, F., Weiss, M., Filella, I. & Peñuelas, J. 2015. GEOCLIM: A global clima-
tology of LAI FAPAR and FCOVER from VEGETATION observations for 1999–2010. Remote 
Sensing of Environment, 166: 126.

Wallach, D., Thornburn. P., Asseng. S., Challinor. A.J., Ewert. F., Jones. J.W., Rotter. R. & 
Ruane, A. 2016. Estimating model prediction error: Should you treat prediction as fixed or 
random? Environmental Modeling Software, 84: 529–539.

Wang, X., He, X., Williams, J.R., Izaurralde, R.C. & Atwood, J.D. 2005. Sensitivity and un-
certainty analyses of crop yields and soil organic carbon simulated with EPIC. Transactions of 
the American Society of Agricultural Engineers (ASAE), 48(3): 1041–1054. 

Willocquet, L., Aubertot, J.N., Lebard, S., Robert, C., Lannou, C. & Savary, S. 2008. 
Simulating multiple pest damage in varying winter wheat production situations. Field Crops 
Research, 107: 12–28. 

Zuba, G., Vergara, O. & Doggett, T. 2005. Using the AIR Weather Index to Estimate the 
Contribution of Climate to Corn and Soybean Yields in the United States. Paper presented 
at the Southern Agricultural Economics Association annual meeting. Available at: http://age-
consearch.umn.edu/bitstream/35613/1/sp05zu01.pdf. Accessed 14 April 2017.



Recent practices and advances for AMIS crop yield forecasting at farm and parcel level: A Review 52





CONTACT

Agricultural Market Information System (AMIS)
Food and Agriculture Organization of the United Nations (FAO) 
Viale delle Terme di Caracalla, 00153 Rome, Italy

Recen
t pra

ctices a
n

d
 a

d
va

n
ces fo

r A
M

IS cro
p yield

 fo
reca

stin
g

 at fa
rm

  a
n

d
 pa

rcel level: A
 review

I7339EN/1/06.17

ISBN 978-92-5-109779-3

9 7 8 9 2 5 1 0 9 7 7 9 3

This publication was prepared with the financial support 
of the Bill & Melinda Gates Foundation
Comments and suggestions are welcome and may be sent to: info@gsars.org


	Pagina vuota
	Pagina vuota



