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Preface

In this study, we examine the annual hidden costs produced by agrifood systems from 2016 to 
2023 for 154 countries. Hidden costs include: i) environmental hidden costs from greenhouse 
gas (GHG) emissions, nitrogen emissions, land-use transitions to and from cropland and 
pastureland, and blue water withdrawals; ii) social hidden costs from distributional failures, 
resulting in undernourishment in national populations and poverty among agrifood workers; 
and iii) health hidden costs from productivity losses due to obesity and non-communicable 
diseases (NCDs) resulting from food consumption (dietary patterns). The expected damage 
to global gross domestic product (GDP) at purchasing power parity (PPP) in 2023 from the 
hidden costs of agrifood systems is around 13 trillion 2020 PPP dollars and trending upwards. 
Modelled uncertainty suggests a 90 percent chance that the damage to global GDP PPP in 2023 
from the considered hidden costs is between 11.3 trillion and 16.6 trillion 2020 PPP dollars. 

Productivity losses from dietary patterns are the largest component of global and regional 
costs and are estimated to have increased by 14 percent from 2016 to 2023. In southern Asia, 
the productivity losses from dietary patterns increased 20 percent over the same period. 
In sub-Saharan Africa, productivity losses from obesity and NCDs from food consumption 
will eclipse the costs of undernourishment and moderate poverty among agrifood workers 
by 2030 if the trends of 2016–2023 continue. Overall, low-income countries bear the 
highest proportional costs of agrifood systems hidden costs, with annual costs equivalent 
to 27 percent of the group’s GDP PPP in 2020. Nitrogen pollution from agrifood systems, 
mainly in the form of ammonia (NH3) emissions to air and reactive nitrogen (Nr) runoff 
from cropland, generates similar external costs to the global emissions of pre-farm-gate,  
at-farm-gate and post-farm-gate GHGs by agrifood systems.

An estimated hidden cost of 13 trillion 2020 PPP dollars is roughly on a par with 10 percent 
of global GDP in purchasing power terms in 2023 and around 35 billion 2020 PPP dollars 
per day. Damages of 35 billion 2020 PPP dollars per day are equivalent to a June 2022 
Pakistan flood every day or a September 2022 Hurricane Ian every four days. Left unchecked, 
the hidden costs generated by agrifood systems activities will depress future growth and 
development. Agrifood systems are not decoupling value production from the increasing 
economic risk of their impacts. Nitrogen pollution, methane emissions and dietary patterns 
are distinct challenges from carbon dioxide (CO2) emissions. For policymakers, policies to 
reduce the increasing economic risk posed by agrifood systems activities and potentially 
boost global growth through the cost-effective reduction of damages are characteristically 
different to the decarbonization pathway demanded of other sectors. 
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Executive summary

In this paper, we examine the annual hidden costs produced by agrifood systems from 2016 
to 2023 for 154 countries. Hidden costs include: i) environmental hidden costs from GHG 
emissions, nitrogen emissions, land-use transitions to and from cropland and pastureland, 
and blue water withdrawals; ii) social hidden costs from distributional failures resulting 
in undernourishment in national populations and poverty among agrifood workers; and 
iii) health hidden costs associated with productivity losses due to obesity and NCDs resulting 
from food consumption (dietary patterns). Costs and their uncertainty are examined at 
the global, regional and country level and in World Bank income groups. They are the 
present value of GDP PPP damages measured in 2020 PPP dollars, also known as 2020 
international dollars.a

The damages calculated are not, in themselves, an indication of the amounts avoidable 
by transitioning from one agrifood system to another. They indicate the relative economic 
impact of activities or pollutants and identify areas for further study and potential action to 
reduce damages by public and private actors. Subsequent work should compare the costs of 
transformation with the value of reducing damages.

Global hidden costs and trends
The net global costs of global agrifood systems activities in 2023 are probably in the range of 
11–15 trillion 2020 PPP dollars. The expected value is about 13.1 trillion 2020 PPP dollars. 
The distribution provides an idea of the spread of possible net global damages due to the high 
degree of uncertainty in the external costs of GHGs, nitrogen emissions, water withdrawal 
and so on. The value of 13.1 trillion 2020 PPP dollars is equivalent to around 10 percent 
of global GDP in purchasing power terms in 2023. Per day, these costs are equivalent to 
35 billion 2020 PPP dollars, or to a June 2022 Pakistan flood every day or a September 2022 
Hurricane Ian every four days.

Annual hidden costs show approximately a 9 percent increase from 2016 to 2023.

Hidden costs are not currently being measured by accounting systems like other economic 
indicators and the damages are estimated based on historical data, future projections and 
partial knowledge of the impact of pollutants on human and natural capital. Observation of 
the damages is not an experiment that can be repeated often. Central measures of risk, such 
as most likely costs and expected costs, support decision-making on frequently occurring 
and observed economic activities, such as market transactions. For low-observation and 
high-uncertainty features such as hidden costs, central measures need to be supported 
by additional risk measures, such as the 5th and 95th percentiles. For low-frequency 
observations, in a one-off game that is the unfolding future, in using such a risk measure, 
the decision-maker asks if they are willing to accept a 5 percent chance of loss above the 
corresponding percentiles of the damage cost distribution.

Using the modelled uncertainty, annual hidden costs in 2023 have a 5 percent chance of 
being 16.5 trillion 2020 PPP dollars or higher and a 95 percent chance of being 11.3 trillion 
2020 PPP dollars or higher.

a	 The hidden costs presented in this paper for the year 2020 slightly differ from those presented in The State 
of Food and Agriculture 2023 report due to misclassification in natural pastureland transitions for Australia 
in the former. Consequently, natural pastureland to cropland transitions were set to zero in the latter report. 
Slight differences are thus visible only in the global estimates, as well as those for Oceania and Australia, and 
the maps and figures associated with these.
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Broadly categorizing the activities of agrifood systems as hidden cost-producing from 
environmental changes (GHG emissions, nitrogen emissions, water use, land-use change), the 
burden of disease from dietary patterns, and social distributional failures (undernourishment 
and moderate poverty), annual environmental external costs and productivity losses from 
diets are the largest hidden costs, in the range of 2–3 trillion to 8–10 trillion 2020 PPP 
dollars, respectively. The modelled risk is higher for environmental costs, primarily from a 
“fat tail” of nitrogen emission costs due to lack of knowledge about the damage to ecosystem 
productivity from nitrogen loading and compounding uncertainty along the nitrogen cascade. 
Environmental external costs averaged about 3 trillion 2020 PPP dollars over the 2016–2023 
period, with a 95th percentile of around 6 trillion 2020 PPP dollars. Expected costs of the 
disease burden from diets averaged 9.3 trillion 2020 PPP dollars from 2016 to 2023.

The external costs of GHG and nitrogen emissions and food consumption are products of 
5 billion hectares of agricultural land use and the biological and cultural needs of 8 billion 
people. Poverty and undernourishment are now more concentrated in scope, so the proportion 
of hidden costs in global agrifood systems – mostly the external costs of global agricultural 
production and productivity losses from dietary patterns in global consumption – is not 
surprising. Most of the costs of social distributional failures are concentrated in sub-Saharan 
Africa, and the breakdown of these costs and trends is discussed below.

Worryingly, losses from dietary patterns trended upwards at a rate of 2 percent or so per 
year in 2016–2023, while costs from nitrogen and GHG emissions trended upwards at the 
rate of about 1 percent per year. Expected productivity losses from dietary patterns increased 
14 percent over the period, in an upward trend from 8.6 trillion to 9.8 trillion 2020 PPP dollars. 
In 2023, the hidden cost of nitrogen emissions has an expected value of about 1.5 trillion 2020 
PPP dollars, while that of GHG emissions is around 0.9 trillion 2020 PPP dollars.

Damages from land-use changes attributable to agriculture (most likely between 
0.25 trillion and 0.5 trillion 2020 PPP dollars in lost ecosystem services, excluding carbon 
sequestration) are trending downwards due to a decline in forest conversion (deforestation) 
and a rise in abandoned agricultural land. From 2021 to 2023, the costs of land-use 
changes were predicted to flatline due to higher commodity price in the post-pandemic 
inflationary period.

Trends in expected costs show that external costs from environmental sources became 
greater for low- to middle-income countries (LMCs) than for high-income countries (HICs) 
over the 2016–2023 period. Environmental external costs for upper-middle-income 
countries (UMCs), which include China and Brazil, are almost twice those of LMCs and 
HICs. Environmental external costs from national agrifood systems are increasing for LMCs 
(including India) and UMCs and are probably decreasing or stabilizing for HICs. Productivity 
losses from dietary patterns are the largest category of hidden costs for all income groups 
except low-income countries (LICs) and increasing across all income groups. Productivity 
losses from dietary patterns account for 62 percent of expected hidden costs in LMCs and 
75 percent in UMCs and HICs.

LICs have a distinct proportion of hidden costs compared with other income groups. Total 
expected costs generated by LICs in 2023 are 381 billion 2020 PPP dollars, with 36 percent 
of expected costs (136 billion 2020 PPP dollars) from environmental pollutants and land-use 
change, 14 percent from productivity lost due to dietary patterns (56 billion 2020 PPP dollars) 
and 50 percent from moderate poverty among agrifood workers and undernourishment 
(190 billion 2020 PPP dollars). The two largest costs for LICs are GHG emissions (105 billion 
2020 PPP dollars) and poverty among agrifood workers (179 billion 2020 PPP dollars). Unlike 
the other income groups, which can be seen more clearly in the country-level hidden costs 
below, only a small proportion of costs (15 billion 2020 PPP dollars) in LICs are associated 
with nitrogen pollution.
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The costs of moderate poverty among agrifood workers and undernourishment surged 
for all income groups during the COVID-19 pandemic in 2020, and World Bank and 
Food and Agriculture Organization of the United Nations (FAO) projections expect them 
to resume a downward trend. World Bank analysis shows that government intervention 
prevented an expected large increase in poverty in some countries. In terms of total 
income shortfall from the 3.65 PPP 2017 dollar poverty line, LMCs’ shortfall had been 
decreasing at the fastest rate prior to the COVID-19 pandemic and was most shocked by 
it in 2020. LICs remain unchanged on poverty alleviation, in part due to the concentration 
of the extreme poor in fewer countries with entrenched poverty. LMCs have double the 
total income shortfall of LICs, but nearly three times the population. Per capita, LICs bear 
the highest burden in terms of moderate poverty and undernourishment, with a recent  
non-decreasing trend.

Comparing the hidden costs of agrifood systems per capita with GDP PPP per capita in 
2020 reveals that LICs bore the highest burden. The hidden costs of agrifood systems in LICs 
were equivalent to 27 percent of GDP PPP per capita. In HICs, the hidden costs of agrifood 
systems were equivalent to 8 percent of GDP per capita, predominantly from productivity 
lost as a result of dietary patterns.

Regional hidden costs and trends
FAO chose eight regions to complement the breakdown of agrifood systems hidden costs 
by World Bank income group. Productivity losses resulting from dietary patterns and the 
costs of nitrogen and GHG emissions remain the largest environmental costs at regional 
level, except in sub-Saharan Africa. Eastern and Southeastern Asia, the most populous 
region, with 2.25  billion people in 2020, has the largest total productivity losses from 
dietary patterns in 2023, at 3 017 billion 2020 PPP dollars. Productivity losses in eastern 
and Southeastern Asia from dietary patterns in 2020 equate to 1 268 2020 PPP dollars per 
capita. Productivity losses from dietary patterns increased 20 percent from 2016 to 2023 in  
Southern Asia.

Southern Asia, Eastern and Southeastern Asia, and Latin America and the Caribbean 
regions have the largest environmental external costs in both absolute and relative terms 
(estimated at 406 billion, 780 billion and 493 billion 2020 PPP dollars, respectively, in 2023). 
The largest external cost components are GHG and nitrogen emissions (nitrogen emission 
costs are estimated at 208 billion, 539 billion and 312 billion 2020 PPP dollars, respectively, 
in 2023). Hidden costs from nitrogen emissions in the three regions constitute 69 percent of 
the global cost of agrifood systems nitrogen emissions.

Agrifood worker poverty and undernourishment in the general population remain higher 
economic costs to sub-Saharan Africa (285 billion 2020 PPP dollars in 2023) than productivity 
losses from dietary patterns (242 billion 2020 PPP dollars in 2023). Agrifood worker poverty 
and undernourishment remained static from 2016 to 2023 due to the COVID-19 pandemic, 
while productivity losses from dietary patterns are estimated to have increased 14.5 percent 
over the period. Assuming productivity losses from dietary patterns continue to increase at 
the same rate, by 2030 or earlier, productivity losses from dietary patterns in sub-Saharan 
Africa will be a greater cost to GDP PPP than agrifood worker poverty and undernourishment. 
Costs of GHG emissions remained the largest category of external environmental costs for 
sub-Saharan Africa (estimated at 148 billion 2020 PPP dollars in 2023). Farm-gate CH4 

emissions, CO2 emissions from land-use changes (deforestation) and nitrous oxide (N2O) 
from fertilizer production are the largest contributors to the external costs of GHGs across 
sub-Saharan Africa.

The countries with the highest net hidden costs generated by agrifood systems are 
the world’s largest food producers and consumers. The United States of America (around 



xiv

1.64  trillion 2020 PPP dollars), the BRICb countries – in order of expected costs, China 
(2.67 trillion 2020 PPP dollars), India (1.17 trillion 2020 PPP dollars), Brazil (0.53 trillion 
2020 PPP dollars) and the Russian Federation (0.52 trillion 2020 PPP dollars) – are the 
top generators of costs in 2023 and were mostly unchanged in that order in 2016–2023. 
For China, India, the Russian Federation and the United States of America, most hidden costs 
stem (more than 75 percent) from dietary patterns. Brazil is the exception, with 45 percent 
of hidden costs being external costs from environmental sources. As a bloc, the European 
Union Member States would appear in third position, with total agrifood systems hidden 
costs of 1.82 trillion 2020 PPP dollars in 2023, of which 284 billion 2020 PPP dollars are 
from environmental sources and 1.54 trillion 2020 PPP dollars (84 percent of total costs) are 
productivity losses from dietary patterns.

Nitrogen emissions are the largest class of environmental external cost for all of the 
countries with the highest agrifood systems hidden costs. China (estimated 375 billion 2020 
PPP dollars in 2023), Brazil (estimated 161 billion 2020 PPP dollars in 2023), India (estimated 
144 billion 2020 PPP dollars in 2023) and the European Union (estimated 130 billion 2020 
PPP dollars in 2023) have the largest external cost production – and likely cost bearing – from 
nitrogen emissions from agrifood systems. In the United States of America, the expected 
costs of nitrogen emissions (60 billion 2020 PPP dollars) and GHG emissions from agrifood 
systems (56 billion 2020 PPP dollars) are comparable. These figures are expected values 
and skewed towards higher damages for nitrogen emissions due to the larger degree of 
uncertainty involved.

In terms of risk, the tail of hidden costs is “fatter” for China than the United States 
of America due to large quantities of reactive nitrogen in surface waters from the runoff 
from agricultural land and human sewerage, and the uncertainty inherent in external costs. 
Using the 95th percentile of hidden costs as a risk indicator, China’s economic risk from 
agrifood systems activities is up to two times higher than expected values (a 95th percentile 
of 4 trillion 2020 PPP dollars net hidden costs and a 95th percentile of 1.6 trillion 2020 PPP 
dollars for nitrogen emissions estimated for 2023). The economic risk in China from external 
nitrogen pollution is 10 times larger than in the United States of America (a 95th percentile 
of 2.3 trillion 2020 PPP dollars in net hidden costs and a 95th percentile of 147 billion 2020 
PPP dollars for nitrogen emissions estimated for 2023, respectively). Expected value as a 
measure of central tendency can be sensitive to outliers. Using the median as a central 
measure, China has larger hidden costs (median 2023 hidden costs of 2 518 billion 2020 PPP 
dollars) than the United States of America (median 2023 external costs of 1 602 billion 2020 
PPP dollars). Median external costs of agrifood systems nitrogen emissions in 2023 were 
almost three times higher in China (112 billion 2020 PPP dollars) than the United States of 
America (40 billion 2020 PPP dollars).

Farm-gate CH4 emissions (Brazil, China, India, Pakistan and the United States of 
America), CO2 emissions from deforestation (Brazil, Colombia, the Democratic Republic of 
the Congo and the United Republic of Tanzania) and CO2 emissions from fertilizer production, 
manufacturing, retail and consumption (pre-and post-farm gate) in China, Germany, India, 
Iran, Japan, the Russian Federation and the United States of America are the predominant 
forms of emission contributing to external costs.

N2O farm-gate emissions add to the significant costs of other forms of nitrogen pollution in 
Brazil, China, India and the United States of America. The external costs of N2O and methane 
(CH4) outweigh the costs of CO2 emissions in many of the largest producers (Argentina, 
Brazil, China, India, Mexico, Pakistan and the United States of America). Deforestation for 
agricultural land expansion, in the form of conversion of forest habitat to cropland and 

b	 BRIC = Brazil, Russian Federation, India and China.
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pasture, is the predominant contributor to external costs from land-use change. Ammonia 
agrifood emissions (NH3) and nitrate (NO3) emissions to surface waters from agricultural 
runoff produce the main nitrogen costs in all of the countries with high external costs of 
agrifood nitrogen emissions. NH3 emissions dominate in areas such as western Europe that 
already have regulations on nitrogen oxides (NOx) emissions and nitrates in surface waters.

Economic indicators
The largest agricultural producers and food consumers are expected to have the highest 
external costs. Additional comparison of regions and countries can involve economic ratios. 
If the gross value added (GVA) of agrifood systems activities for countries is available in PPP 
terms, the external costs can be divided by the GVA to obtain a basic cost–benefit measure. 
The United States of America publishes headline figures for agriculture, food manufacturing 
and food retail value added. Using the figures for 2021, US food and agricultural sector 
value added was 1.2 trillion 2020 PPP dollars and expected US food-sector hidden costs 
were 1.6 trillion 2020 PPP dollars, yielding a ratio of 1.33. Every 1 2020 PPP dollar in value 
added generated by the US food and agricultural sector produced 1.33 2020 PPP dollars in 
expected external costs.

Few other countries publish comparable value-added figures for agrifood systems. 
As a proxy, we use three measures for agrifood systems based on the nature of market 
failure and cost production source: i) agricultural production and land use to agricultural 
GVA; ii) productivity losses from dietary patterns to total productivity from labour; and iii) 
agrifood workers in moderate poverty and productivity losses from undernourishment in the 
moderately poor compared with the mean income of the moderately poor. The indicators 
interpret this as gross hidden cost – visible benefit ratios of agrifood systems. High values 
imply disproportionate cost-bearing from pollution, land-use change, dietary patterns and 
so on compared with the value of the agrifood goods and services enabled by the production 
of pollution, habitat loss, obesity and the like.

We link agricultural activities with the external costs of GHG emissions from the farm 
gate and land-use change, land-use transition to and from cropland and pasture, and blue 
water consumption. We divide the external costs of agricultural activities by agricultural, 
forestry and fishing (AFF) GVA in PPP terms, which is available for all countries in the study. 
We call this ratio the agricultural externalities impact ratio (AEIR). To minimize the influence 
of outliers, AEIR is calculated using expected external costs and AFF GVA averaged over 
2016–2020.

The global AEIR is 0.31, indicating that 0.31 2020 PPP dollar of external cost is generated 
for every 1 2020 PPP dollar of agricultural value added. On average, a hectare of agricultural 
land globally produces 473 2020 PPP dollars of external costs and 1 532 2020 PPP dollars 
of GVA.

HICs generated approximately 11 percent of global AFF GVA PPP in 2020, but produced 
approximately 24 percent of external costs from agricultural production and land use and 
land-use change (LULUC). The AEIR for HICs is 0.76 (0.76 2020 PPP dollar in external costs for 
every 1 2020 PPP dollar of AFF GVA PPP) compared with an AEIR of 0.35 for UMCs, 0.17 for 
LMCs and 0.36 for LICs. The risk that developed countries are generating additional economic 
damage is higher: the 95th percentile of the AEIR for HICs is 1.22 compared with 0.87 for 
UMCs, 0.35 for LMCs and 0.74 for LICs. This contrast is apparent at country level, where 
the AEIR of China is 0.21 compared 1.14 for the United States of America. China has larger 
external costs of agricultural production, but China’s AFF value added to GDP PPP is eight 
times larger than that of the United States of America. LMCs produce lower external costs for 
value added in agriculture according to the AEIR indicator. India has an AEIR of 0.13.
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Regionally, Latin America and the Caribbean, Europe and North America have high 
AEIR indicators. There is little confidence in indicators for Oceania due to the uncertainty 
inherent in the net value of habitat loss and habitat return from land-use change. The 
Americas have the highest AEIR. Asia and Africa have the lowest AEIR. Southern Asia’s 
AEIR of 0.14 is roughly half that of sub-Saharan Africa, at 0.28, not because the agricultural 
sector is less important in GDP PPP terms to sub-Saharan African economies, but because 
of their combination of low agricultural productivity and relatively high production of GHG 
emissions from farms and land-use change.

The largest producers and consumers of food do not have the highest AEIR indicators for 
2020 among the 154 countries studied. The United States of America ranks 20th and Brazil 
ranks 17th on the AEIR indicator. A range of African and European countries rank highest: 
Botswana, the Central African Republic, the Democratic Republic of the Congo, Lesotho, 
South Sudan and Zambia all have an expected value of hidden costs greater than 2 2020 PPP 
dollars for every 1 2020 PPP dollar of agricultural value added. The European countries of 
Belgium, Denmark, Ireland and the United Kingdom of Great Britain and Northern Ireland 
have a higher AEIR indicator than the United States of America. Up to 2 2020 PPP dollars 
of external costs are generated for every 1 2020 PPP dollar of agricultural value added 
in Ireland and the United Kingdom of Great Britain and Northern Ireland. This indicates 
intensive use of agricultural inputs, particularly nitrogen emissions, for sectors that provide 
a low percentage of total GDP PPP.

The AEIR is an indicator of production. For consumption, dividing productivity losses 
from dietary patterns by national or regional GDP PPP forms an indicator we call the dietary 
patterns impact ratio (DPIR). The global DPIR is 0.072, indicating that global productivity 
losses from dietary patterns are equivalent to 7.2 percent of global GDP PPP in 2020. The DPIR 
indicator for LICs is about 0.04 compared with 0.09 for UMCs. The DPIR is in the range of 
5–10 percent of regional GDP PPP across all regions, underscoring the global syndemic of 
obesity and NCDs from dietary intake. Sub-Saharan Africa had the lowest economic burden 
from dietary patterns in 2020, at 0.055. Southern Asia, however, is not largely different 
from Eastern and Southeastern Asia, with DPIR indicators of 0.072 and 0.075, respectively. 
Europe has the highest DPIR indicator, at 0.081.

Though China and the United States of America are among the world’s largest food 
consumers, they both rank below 20th place among the 154 countries studied, with DPIR 
indicators of 0.09 and 0.064, respectively. India’s DPIR is 0.072.

Eastern European countries rank highest on the DPIR indicator for 2020. Productivity 
losses in Belarus, Bulgaria, Croatia, Czechia, Estonia, Hungary, Latvia, Lithuania, the 
Republic of Moldova, Poland, Serbia, Slovakia and Ukraine are equivalent to 15–30 percent 
of GDP PPP and more than twice the European Union and HIC average. Countries with a high 
DPIR risk damping economic growth with diets that are too high in calories, sugar, salt and 
transfats and insufficiently high in wholegrains, nuts and seeds, and fruit and vegetables.

As an indicator of distributional failure, we assume that a loss of productivity from 
undernourishment is experienced by the moderately poor. Therefore, both the income 
shortfall of agrifood systems workers in moderate poverty and productivity losses from 
undernourishment are considered impediments to moderate poverty alleviation through 
negative income effects. We divide their combined costs by the total national income of 
the moderate poor to form an indicator called the social distribution impact ratio (SDIR). 
The global SDIR is 0.31, indicating net costs of moderate poverty in agrifood workers and 
productivity losses from protein–energy malnutrition in the moderate poor, equivalent to 
31 percent of the net global income of the moderately poor. Southern Asia and sub-Saharan 
Africa are the regions with the highest number of people in moderate poverty. At a regional 
level, the SDIR indicator largely follows income levels and the structure of economies. 
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Despite having similar net poverty costs, the SDIR indicator for southern Asia is half that 
of sub-Saharan Africa. The SDIR indicator for southern Asia is comparable to that of other 
regions, at 0.24, while sub-Saharan Africa has the highest SDIR, at 0.53, indicating a large 
intersection between agrifood systems and moderate poverty.

Discussion
Annual external costs from agrifood systems nitrogen emissions are estimated, up to 
the modelled uncertainty, to be of the same order as or to exceed agrifood systems GHG 
emissions at global and regional level and in the largest food-producing countries. Given the 
emphasis on agrifood GHG emissions in international forums, this finding may be surprising. 
Explanations include the fact that the large degree of uncertainty surrounding nitrogen 
emissions arises from a high degree of uncertainty in the estimates of the value of ecosystem 
services, the lack of spatially explicit data on the damage to ecosystem service productivity 
from nitrogen loading, and the compounding of uncertainty in the cost modelling along the 
nitrogen cascade.

Uncertainty modelling for GHG costs has been limited to a more prescriptive parameter 
substitution in economic integrated assessment modelling. Most nitrogen damage costs 
occur in the near future compared with GHGs, so discounting has a greater effect in reducing 
the present value of GHG costs. The losses to GDP of future emissions have also not been 
modelled in PPP terms, which reduces the GHG cost estimates. This study uses social costs 
of GHGs, which account for carbon markets and taxes that internalize damage costs into 
the future through GHG abatement. No similar instruments are on the horizon for nitrogen 
emissions. Despite the uncertainty in the modelling and the differences in cost estimation, 
it is more than likely that the magnitude of the present value of external costs of nitrogen 
emissions and GHG emissions is of the same order.

It should be emphasized that the estimates are for the damages of nitrogen emissions; 
the  value of nitrogen fertilizer to the global economy and feeding the global population 
compared with the damages it produces while providing those benefits are subsequent 
considerations. The social costs of nitrogen emissions have not attracted the same scientific 
or policy attention as GHGs and are more difficult to calculate than the social costs of GHGs. 
The difference in damages and social costs can be marked. China is the world’s largest 
agricultural nitrogen polluter and, in mean terms, the estimated costs of reactive nitrogen 
runoff are the largest component of external costs from production. However, on a value-
added basis, when the external costs are compared with the value added of agricultural 
production in PPP terms, China produces a mean of 0.21 2020 PPP dollars in external costs 
for every 1 2020 PPP dollar of value added. Another significant agricultural nitrogen polluter, 
the United States of America, produces a mean of 1.15 2020 PPP dollars in external costs for 
every 1 2020 PPP dollar of value added.

In central sub-Saharan African countries, the production of external costs in the order of 
2–5 2020 PPP dollars for every 1 2020 PPP dollar of value added indicates an urgent need for 
development and an investment focus on sustainable intensification. The agricultural sector 
should increase its contributions to GDP PPP while rapidly improving efficiency in terms of 
GHG emissions and land-use through technology, better infrastructure and access to high-
quality fertilizer, as well as improvements in education and farm and land management 
practices. Countries with a high AEIR and a high percentage of AFF in overall GDP are at 
risk of damping economic growth and development by bearing the future economic burden 
of the external costs generated now by their agricultural activities.

Globally, this study and previous studies on the “true” costs of agrifood systems highlight 
the expected losses brought about by GHGs from agrifood activities; the air pollution and 
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reduced ecosystem services arising from the change to the nitrogen cycle caused by the 
global application of synthetic fertilizers and increase in intensive livestock production; and 
the extensive productivity losses from dietary patterns in both the developing and developed 
world. Collectively, the costs are equivalent to around 10 percent of global GDP PPP and are 
increasing in line with GDP PPP growth – faster in developing regions.

On the surface, both nitrogen emissions and dietary patterns appear to offer joint 
negative abatement costs. Nitrogen use efficiency and the over-application of fertilizers 
implies that producers can save on nutrient input costs without sacrificing yield. Similarly, 
dietary change will result in better health for consumers and, in a developed world context, 
potential savings on food expenditure. A large body of literature exists on cost-effectiveness 
in public health interventions for obesity. Global growth and development could be boosted 
by a cost-effective reduction in damage. Despite the benefits of reducing the hidden costs of 
agrifood systems, production of the quantities associated with the largest costs continues to 
increase and hidden costs are trending upwards. Agrifood systems are not decoupling value 
production from the increasing economic risk of its impacts. For policymakers, policies to 
reduce the increasing economic risk posed by agrifood systems activities appear to remain 
challenging and characteristically different from the decarbonization pathway demanded of 
other sectors.
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1	 Introduction 

A new model of the marginal external damage costs to national GDP PPP of agrifood systems 
developed at the University of Oxford Environmental Change Institute for the Food System 
Economic Commission has been paired with data from FAO and other sources on national 
agrifood systems’ annual production of GHG emissions,1, 2 nitrogen emissions,3–6 land-use 
transitions to and from cropland and pastureland,7–9 blue water withdrawals, the burden of 
disease from dietary patterns,10–15 the prevalence of undernourishment (POU) (insufficient 
calories as defined by FAO)16–19 and the number of agrifood systems workers in moderate 
poverty (below the 3.65 2017 PPP dollar per day international moderate poverty line defined 
by the World Bank).20–22 This has enabled the estimation of “hidden costs” of agrifood systems 
at a national level for 154 countries by pairing quantities of emissions, land-use change and 
so on against their present value (in 2020 PPP dollars) per unit cost to GDP PPP in the year of 
emission, land-use change and so on and in future years.23–31 Annual hidden costs are the net 
present value (NPV) cost of all such damaging activities of agrifood systems within the same 
year. Trends in annual hidden costs are estimated from 2016 to 2023 and examined at the 
global, regional and country level, as well as in World Bank income groups.

Previous studies have estimated annual hidden costs, or the “true costs”, of agrifood 
systems at a global level using global average cost factors such as global GDP per capita 
and global average values for ecosystem services.24, 27, 32, 33 This study uses the SPIQ-FS model 
of marginal external damage costs for hidden cost production at a national level based on 
GDP PPP losses.34–38 Even though GDP PPP is an incomplete economic measure of social 
welfare,39–44 measuring hidden costs in GDP PPP damages complements welfare studies by 
i) being comparable to national accounts such as the GVA of agriculture in PPP terms, and 
ii) being comparable to national expenditure aimed at reducing GHG emissions, nitrogen 
emissions, habitat loss through land-use change, malnutrition and poverty reduction. This 
study estimates costs at a national and regional level for 154 countries and considers real and 
projected costs from 2016 to 2023. The SPIQ-FS model uses random variables to represent 
large uncertainty in non-market unit cost calculations due to a lack of knowledge of the impact 
of agrifood systems activities on ecosystem services and other components of natural and 
human capital.45 Previous studies have considered error bars on global hidden costs. This 
study estimates the economic risk of the hidden costs of agrifood systems by considering the 
probability distributions of national GDP PPP per unit of loss.

The annual hidden costs in this study do not reflect the GDP PPP loss that may be avoided 
by transitioning to more sustainable agrifood systems. Hidden costs for present agrifood 
systems equivalent to 10 percent of global GDP PPP in 2020 do not mean that counterfactual 
sustainable agrifood systems, COVID-19 pandemic notwithstanding, would have avoided the 
hidden costs and boosted global GDP PPP in 2020 by 10 percent. It is important to emphasize 
that the hidden costs of present agrifood systems may be avoidable, but that hidden cost 
damage estimates do not indicate the costs of transitioning to alternative agrifood systems. 
Subsequent studies are needed to compare the costs and benefits of alternative agrifood 
systems that reduce hidden costs.27
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2	 Concepts and methodology

K E Y  M E S S A G E S

The model estimates, for a total of 154 countries over 2016–2023, the annual 
hidden costs of agrifood systems affecting environmental pathways (from GHG 
and nitrogen emissions, land and water use), health as a result of dietary patterns, 
and social pathways from undernourishment and moderate poverty.

Hidden costs are measured in 2020 PPP dollars, or the equivalent amount of 
a basic goods basket that one dollar, once exchanged to local currency, would 
have purchased in a country in 2020. The consumption of these goods represents 
welfare and, consequently, hidden costs represent the loss in welfare brought 
about by reduced purchasing power, driven by losses in productivity.

Hidden costs are calculated by multiplying emissions and other quantities 
associated with agrifood systems externalities and market failures (that is, impact 
quantities) over 2016–2023 against their marginal damage cost (that is, unit cost) 
to GDP PPP.

Being at country level and presented as a monetary measure comparable to 
damage to GDP, the hidden costs can be aggregated at global, regional and 
income level and compared with macroeconomic indicators.

Annual costs and trends in these costs are calculated by multiplying emissions and other 
quantities associated with externalities and market failures attributable to agrifood systems 
in the years 2016–2023 (called impact quantities), against their per unit cost to GDP PPP 
(marginal damage cost) in the given and future years. Quantities (Table 1) and their marginal 
damage costs are estimated at a national level (Annex 2) for 154 countries (Annex  4), 
multiplied together (Annex 1) and then aggregated to obtain regional and global totals 
(Annex 3). 

Data files showing the country quantities, the marginal costs and totals are available at 
Lord (2023).46 

Damage costs to GDP PPP for all countries are measured in 2020 PPP dollars.47,  48 

Purchasing power parity represents the equivalent amount of a basic goods basket that 
one dollar, once exchanged to local currency, would have purchased in that country in 
2020. Beyond a comparison of damage costs to the national accounts, PPP, as a limited 
welfare measure, represents welfare provided by the consumption of the basic goods 
basket. Damage costs measured in 2020 PPP dollars represent the reduction in welfare due 
to reduced purchasing power, while avoided damage costs represent the benefit from an 
avoided reduction in welfare.
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TABLE 1	 Impact quantities disaggregated into cost items with attached 
marginal costs

Cost 
category Item Impact 

quantity
Cost 
type Marginal cost Capital 

change

Climate GHG 
emissions 
(CH4): 
farm-gate 
emissions

CH4 
metric 
tonne

E Social cost of CH4 – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(CH4): 
land-use 
change

CH4 
metric 
tonne

E Social cost of CH4 – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(CH4): pre- 
and post- 
production

CH4 
metric 
tonne

E Social cost of CH4 – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(CH4): 
farm-gate 
emissions

CH4 
metric 
tonne

E Social cost of CH4 – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(CH4): 
land-use 
change

CH4 
metric 
tonne

E Social cost of CH4 – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(CH4): pre- 
and post- 
production

CH4 
metric 
tonne

E Social cost of CH4 – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(CO2): 
farm-gate 
emissions

CO2 
metric 
tonne

E Social cost of CO2 – residual damages 
to global GDP PPP from agricultural 
losses in NPV at the optimal amount 
of abatement, attributed to the 
country of emission

N

Climate GHG 
emissions 
(CO2): 
land-use 
change

CO2 
metric 
tonne

E Social cost of CO2 – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(CO2): pre- 
and post- 
production

CO2 
metric 
tonne

E Social cost of CO2 – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N


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2    Concepts and methodology

TABLE 1 (cont.)	 Impact quantities disaggregated into cost items with attached 
marginal costs

Cost 
category Item Impact 

quantity
Cost 
type Marginal cost Capital 

change

Climate GHG 
emissions 
(CO2): 
farm-gate 
emissions

CO2 
metric 
tonne

E Social cost of CO2 – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(CO2): 
land-use 
change

CO2 
metric 
tonne

E Social cost of CO2 – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(CO2): pre- 
and post- 
production

CO2 
metric 
tonne

E Social cost of CO2 – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(N2O): 
farm-gate 
emissions

N2O 
metric 
tonne

E Social cost of N2O – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(N2O): 
land-use 
change

N2O 
metric 
tonne

E Social cost of N2O – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(N2O): pre- 
and post- 
production

N2O 
metric 
tonne

E Social cost of N2O – residual 
damages to global future GDP PPP 
from agricultural losses in NPV at 
the optimal amount of abatement, 
attributed to the country of emission

N

Climate GHG 
emissions 
(N2O): 
farm-gate 
emissions

N2O 
metric 
tonne

E Social cost of N2O – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(N2O): 
land-use 
change

N2O 
metric 
tonne

E Social cost of N2O – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O

Climate GHG 
emissions 
(N2O): pre- 
and post-
production

N2O 
metric 
tonne

E Social cost of N2O – residual damages 
to global future GDP PPP from 
mortality in NPV at the optimal 
amount of abatement, attributed to 
the country of emission

O


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TABLE 1 (cont.)	 Impact quantities disaggregated into cost items with attached 
marginal costs

Cost 
category Item Impact 

quantity
Cost 
type Marginal cost Capital 

change

Water Blue water 
withdrawal: 
agricultural 
use

Cubic 
metre

E Agricultural losses and productivity 
losses in the country of withdrawal 
due to the burden of disease from 
protein–energy malnutrition, in the 
present and future in NPV, due to 
water deprived from economic use

N

Land Land-use 
change: 
abandoned 
cropland to 
Forest

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares 
of present and future returned 
ecosystem services in NPV in the 
country of land-use transition due 
to recovery or re-establishment of 
ecosystem

N

Land Land-use 
change: 
abandoned 
cropland to 
unmanaged 
grassland

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares 
of present and future returned 
ecosystem services in NPV in the 
country of land-use transition due to 
the recovery or re-establishment of 
ecosystem

N

Land Land-use 
change: 
forest to 
cropland

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares of 
present and future lost ecosystem 
services in NPV in the country 
of land-use transition due to the 
destruction or degradation of forest 
ecosystem

N

Land Land-use 
change: 
forest to 
pasture

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares of 
present and future lost ecosystem 
services in NPV in the country 
of land-use transition due to the 
destruction or degradation of forest 
ecosystem

N

Land Land-use 
change: 
pasture to 
forest

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares 
of present and future returned 
ecosystem services in NPV in the 
country of land-use transition due to 
the recovery or re-establishment of 
ecosystem

N

Land Land-use 
change: 
pasture to 
unmanaged 
grassland

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares 
of present and future returned 
ecosystem services in NPV in the 
country of land-use transition due to 
the recovery or re-establishment of 
other land ecosystem

N

Land Land-use 
change: 
unmanaged 
grassland to 
cropland

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares of 
present and future lost ecosystem 
services in NPV in the country 
of land-use transition due to the 
destruction or degradation of forest 
ecosystem

N


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TABLE 1 (cont.)	 Impact quantities disaggregated into cost items with attached 
marginal costs

Cost 
category Item Impact 

quantity
Cost 
type Marginal cost Capital 

change

Land Land-use 
change: 
unmanaged 
grassland to 
pasture

Effective 
hectares 
of lost of 

ecosystem 
services 

(ha)

E Value of equivalent hectares of 
present and future lost ecosystem 
services in NPV in the country 
of land-use transition due to the 
destruction or degradation of other 
land ecosystem

N

Nitrogen NH3 
emissions to 
air

NH3 N-kg E Productivity losses in the country 
of emission due to the burden of 
disease from particulate matter 
formation

O

Nitrogen NOx 
emissions 
to air

NH3 N-kg E Agricultural and ecosystem service 
losses from nutrient imbalance 
and the acidification of terrestrial 
biomes due to deposition, 
ecosystem services losses from 
nutrient imbalance, acidification 
and eutrophication of riverine, 
wetland and coastal systems due to 
deposition runoff

N

Nitrogen NOx 
emissions 
to air

NOx N-kg E Productivity losses in the country 
of emission due to the burden of 
disease from particulate matter 
formation

O

Nitrogen NOx 
emissions 
to air

NOx N-kg E Agricultural and ecosystem 
services losses from ozone 
formation, nutrient imbalance 
and acidification of terrestrial 
biomes due to deposition, 
ecosystem services losses from 
nutrient imbalance, acidification 
and eutrophication of riverine, 
wetland and coastal systems due to 
deposition runoff

N

Nitrogen NO3- 
leached to 
groundwater

NO3- N-kg E Productivity losses in the country 
of emission due to the burden of 
disease from human nitrate intake

O

Nitrogen NO3- loads 
due to 
runoff from 
agricultural 
land to 
surface water

Nr N-kg E Ecosystem services losses from 
nutrient imbalance, acidification 
and eutrophication of riverine, 
wetland and coastal systems due 
to runoff

N

Nitrogen NO3- loads 
due to 
effluent 
or human 
sewerage in 
surface water

Nr N-kg E Ecosystem services losses from 
nutrient imbalance, acidification 
and eutrophication of riverine, 
wetland and coastal systems due to 
runoff

N


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TABLE 1 (cont.)	 Impact quantities disaggregated into cost items with attached 
marginal costs

Cost category Item Impact 
quantity

Cost 
type Marginal cost Capital 

change

Poverty Agrifood 
systems 
worker poverty 
headcount at 
3.65 a day 2017 
PPP dollars

Per 
person

S Cost in PPP terms of 
the income shortfall 
below the moderate 
poverty line of 
agrifood workers

O

Undernourishment Number of 
undernourished

Per 
person

S Productivity losses 
in the country of 
consumption due to 
the burden of disease 
from protein–energy 
malnutrition

O

Dietary patterns Burden of NCDs 
and high BMI 
attributable 
to dietary 
patterns (food 
consumption)

Burden 
of 

disease 
in DALYs

H Productivity losses 
in the country of 
consumption due 
to the burden of 
disease from high 
BMI and NCDs

O

Notes: Cost type refers to external cost from environmental sources (E), productivity loss from dietary patterns 
(H) and cost of distributional failures (S). Capital change refers to costs arising from predominantly natural 
(N) or predominantly other (O) capital changes in the impact pathway. GHG – greenhouse gas; GDP – gross 
domestic product; PPP – purchasing power parity; NPV – net present value; NCDs – non-communicable 
diseases; BMI – body mass index; DALYs – disability-adjusted life years.

Source: Author’s own elaboration.

2.1	 Cost bearing and scope of hidden cost production 
by agrifood systems

External costs or costs from market failures (hidden costs in the terminology of Gaupp et al. 
[2021])24 involve additional costs or benefits not captured in the private costs and benefits 
of market transactions.40–45, 47–49 For externalities, the additional costs and benefits are borne 
or received by third parties. Cost production occurs from the activities of the parties to the 
transaction, which, in the case of distributional failures, may be multiple transactions in the 
value chain and value-chain actors. As an example of imperfect information,50 consumers 
make decisions to account for the longer-term health of food consumption, and the cost 
bearer or benefit receiver is one of the parties when costs or benefits are revealed at a 
later time.

Figure 1 depicts the difference between cost producer, cost bearer and benefit receiver. 
Cost producing, cost bearing and benefit receiving can cross national borders and time. 
The  example of international and intergenerational cost bearing from the production 
of GHGs is an example of spatiotemporal separation between cost producer and cost 
bearer.51–56 The flow of returns to financial investors in fossil-fuel energy,57 GHG-intensive 
livestock production58, 59 and construction,60 while the financial industry itself has low GHG 
emissions, are examples of the separation between cost production and benefit receiver. 
The transfer from cost production (such as polluting) to cost bearing is sometimes referred 
to in environmental assessments as an “impact pathway”.61
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FIGURE 1	 Welfare economics recognizes additional costs and benefits in 
imperfect markets not factored into market costs and benefits

BENEFIT RECEIVER

COST BEARER

Impact pathway

COST PRODUCER

PARTY B
“CONSUMER”

PARTY A
“PRODUCER”

Notes: A cost bearer may be a third party or a party to the transaction at a later time. The benefit 
receiver here receives additional benefits due to the cost bearing of the cost bearer. Party A, party B 
or both may be cost producers or benefit producers due to their activities. The classical example 
is external costs of pollution in the production of goods, where damages caused by pollution are 
not included in the costs of production for A. The buyer B purchases at a lower price, enabling 
lower production costs and higher profit from the sale of B’s own goods, which increases returns to 
investors, among benefit receivers. The cost bearer of pollution from A has paid for free benefits to 
the investor of B. The complex path from the production of pollution such as GHGs to the bearing of 
costs by economic actors in a future economy is one of the challenges in estimating agrifood systems 
external costs and the costs of market failures.

Source: Author’s own elaboration.

Figure 2 and Table 1 characterise quantities associated with hidden cost production within 
the scope of agrifood systems. The quantities included are not exhaustive; other studies have 
included costs of antimicrobial resistance from the use of antibiotics in livestock production, 
productivity losses arising from lost pollination services due to pesticide use, and the attribution 
of distributional issues, such as living wages and micronutrient undernourishment in addition 
to chronic caloric undernourishment.24, 27, 32, 33 For the first version of the SPIQ-FS costing model, 
there were no consistent spatial datasets available to derive annual average marginal costs to 
GDP PPP at a national level for additional units of antibiotic use or pesticide use.

Simplifying assumptions are needed to interpret the produced costs in this study in 
terms of national cost bearing. Transborder effects in cost models are simplified or ignored. 
For example, productivity losses arising from over-consumption or NCDs ignore future 
migration and travel. Consumption in country creates productivity loss in country. The cost 
bearing of climate change is assumed to be transferred to the country of emission by future 
damage and loss payments to cost bearers.62, 63 Blue water consumption creates future 
water scarcity in the same country. Air pollution and the deposition of volatilized nitrogen 
species occurs in national boundaries. Ecosystem service losses from habitat loss occur in 
the same country as the habitat loss. These limitations are discussed in the current SPIQ-FS 
version 0 documentation. Later studies should improve the modelling of nitrogen and water 
scarcity external costs and help to understand transfers from cost-producing to cost-bearing 
countries.64 To understand attribution and equity between cost bearers and the beneficiaries 
of cost bearing,65 more data are required globally on the distribution of benefits across value 
chains for agrifood systems, potentially broadening the scope of financial flows to financers 
and investors. While there are new models of global multiregional physical flows for food 
systems,66 the understanding of financial flows needed to attribute damage and loss in the 
presence of foreign ownership and international trade is still limited to certain value chains.67
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FIGURE 2	 Quantities associated with the production of hidden costs and 
market failures characterized by value chain activity and actors 
in agrifood systems

VALUE CHAIN DIMENSION

CONSUMERSAGRIFOOD SECTORS

FORESTRY
DOWNSTREAM NON-FOOD

(processed wood, cotton, tobacco, biofuels, etc.)
AGRICULTURAL

INPUTS
PRIMARY

PRODUCTION
(food and non-food)

FOOD
MANUFACTURING

FOOD
RETAIL

FOOD
CONSUMPTION

FOOD
WASTE

UndernourishmentPoverty among those employed in agrifood systems 

Agrifood systems scope
covered by the analysis  

Primary production 
and land use

Environmental
pathways

Social 
pathways

Health 
pathways

GHG emissions 
from waste, waste 
incineration and 

wastewater 
treatment

Nitrogen emissions 
from sewerage

Greenhouse gas 
(GHG) emissions 

from fertilizer 
production

GHG emissions from 
land-use change 
and energy use 

Nitrogen emissions 
Blue water 

consumption
Habitat loss

GHG emissions 
from energy 

use, transport, 
processing, 

packaging and 
waste

GHG emissions 
from energy, 

transport, 
packaging, 

refrigeration 
and waste

GHG emissions 
from household 

energy use

Burden of disease
due to dietary 

patterns

Notes: The definition of agrifood systems follows that of FAO (2021),82 with the exception of the 
inclusion here of (non-food) input supply chains, such as fertilizer and pesticide. The scope of agrifood 
systems for this study is defined by the solid red border. Quantities from Table 1 are mapped to the 
scope. GHG emissions from energy use by the agricultural sector are excluded from the agricultural, 
forestry and other, land use and land-use change (AFOLU) scope by the Intergovernmental Panel 
on Climate Change (IPCC). Agrifood systems value chains exclude inputs, GHG emissions, nitrogen 
surplus, blue water use and consumption, and habitat loss associated with non-food agricultural 
commodities such as tobacco, cotton and biofuels. Value chain distribution refers to both physical and 
financial distributional failures: income shortfall from moderate poverty lines for agrifood workers 
despite order-of-magnitude higher retail revenues for food products, and caloric deficiency despite 
large surpluses in available global calories. Other studies have considered additional quantities, such 
as externalities from the use of antibiotics in livestock production, the use of pesticides, and further 
distributional effects, such as lower-than-living wages in manufacturing and retail, and the costs of 
healthy diets. Characterization of the production of external costs and market failures by sector of 
economic activity and economic actors does not imply attribution of damages. Attribution of damage 
costs should follow benefits proportionally. Large external costs associated with GHG emissions and 
nitrogen surplus from agricultural production, and habitat loss from agricultural land expansion, are 
due to the activity of farmers, but the benefits of food production are distributed throughout the value 
chain. As an example, cocoa farmers receive 6–8 percent of the retail sale value of cocoa products.83 
Private or public policies to reduce quantities at the point of production and thereby reduce damages 
may have their own distributional effects if the costs of mitigation do not transmit proportionally to 
benefits in the value chain. The agrifood systems scope limits proportional attribution in the value 
chains of non-food commodities (attribution to the production of health impacts of tobacco consumption 
and labour impacts in the fashion industry, and the attribution of agricultural production externalities 
to tobacco companies and fashion retailers). For counterfactual cost–benefit studies, the scope misses 
out post-farm-gate changes in external costs from shifts in non-food agricultural production and 
inputs, and land-use change interactions with forestry as a competing land user.

Source: Author’s own elaboration.

The global economy is a cost producer, cost bearer and benefit receiver. For global 
estimates of the hidden costs of agrifood systems, the distinction between cost bearer, 
cost producer and attribution of costs proportional to benefits received does not arise. 
This study considers national cost bearing up to caveats of determination from national 
cost production, as indicated in the last paragraph (the simplification that cost production 
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and cost bearing are the same), and then aggregates cost bearing at a regional and global 
scale. Responsibility for costs, in terms of attributing compensation for cost bearing among 
beneficiaries, is beyond the scope of this study.

A final conceptual dimension for this study is the capital changes involved in the impact 
pathway from cost production to cost bearing (Figure 1).61

Hidden costs face the ambiguity of being classified by either cost production, cost bearing 
or by the major components of the impact pathway leading to cost bearing, for example, 
productivity losses from obesity and NCDs due to dietary intake by consumers. Population 
studies are required to understand the burden of disease,68, 69 so the cost bearing is productivity 
loss as an input to a national economic output in GDP PPP terms. The cost bearer is “society” 
through the national economy. Food consumption, as the cost producer, is a human activity. 
Vulnerability and changes in human capital in response to disease burden is the major 
component of the impact pathway between consumption and national productivity loss. 
Labour is the primary factor of cost bearing. Human food consumption–human capital–
labour productivity is the primary axis from cost production to cost bearing. Referring 
to this hidden cost as the “health costs of food consumption” with the emphasis on cost 
production is inaccurate, as there are more costs than productivity losses from the burden of 
disease.70 Referring to this hidden cost as “productivity losses from unhealthy diets” with the 
emphasis on cost bearing is also ambiguous, as diets require food products, and productivity 
losses occur from other health impacts in food production,71 and they might also refer to 
productivity losses from undernourishment.17 “Costs of obesity” with an emphasis on human 
disease as the major component of the impact pathway, too, is ambiguous. Other factors 
besides dietary intake influence the outcomes of obesity, and productivity losses are not the 
only costs.72 Despite inaccuracies, productivity losses from obesity and NCDs from national 
food consumption are broadly classified as productivity losses of dietary patterns and it is 
implicit that change in human capital is the main intermediatory in the impact pathway.

Classifying the losses to future GDP PPP from present GHG emissions as a result of the 
changing climate or the losses to present and near-term GDP PPP from nitrogen emissions 
is more problematic. In the case of agricultural nitrogen emissions, the cost production is 
an environmental pollutant. The impact pathway of volatilized NH3 involves air pollution,73 
for which the major component is exposed human capital, leading to national productivity 
losses.74 The impact pathway of volatilized NH3 also involves deposition on land and 
aquatic systems and runoff from inland aquatic systems to export to coastal ecosystems.75, 76 
Agricultural and natural ecosystems are among the major components of cost for the 
deposition pathway, creating income and ecosystem service losses.77 Ecosystem services 
have complex connections, ultimately, through further natural and human capital changes to 
produced capital and factors of productivity at the scale of national GDP PPP.78 Categorizing 
the external costs of NH3 pollution as an environmental hidden cost refers only to cost 
production. Cost-bearing and the mechanisms leading to cost bearing involve multiple forms 
of capital and realizations of cost into a present and future national economy.

In this study, we use a primary classification by cost production in Table 1. Reducing 
the hidden costs of agrifood systems by mitigating quantities (cost production) is often the 
first best policy.79 A secondary classification based on major capital components in impact 
pathways is employed for national indicators of cost bearing, introduced in Section 4.80, 81 

Though imperfect, it was considered helpful to policymaking on agrifood systems impacts 
associated with agricultural activities that classification be further separated by cost bearing 
arising from predominantly agricultural or natural capital impacts, or other, mainly human, 
capital impacts. Existing or new policy that influences the major components of the pathway 
to cost bearing may also be effective, as well as understanding the relative need or relative 
expenditure between natural or human capital interventions.
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2.2	 Impact quantities
Quantities associated with hidden cost production within the scope of agrifood systems are 
referred to as impact quantities in this study (Figure 2 and Table 1). Impact quantity data 
for 2016–2023 are reported by countries and modelled. Data were obtained from 2014 
to 2020 for 154 countries. Missing data for 2014–2020 were interpolated using moving 
average or regional change rates. Data for 2021–2023 were extrapolated alongside GDP 
and other exogenous macroeconomic indicators using vector autoregression methods due 
to the COVID-19 pandemic. Data for moderate poverty and the POU used World Bank and 
FAO projections, respectively. Data series for land-use change and consumption disability-
adjusted life years (DALYs) were only available for 2014–2019, so in this case, the years 
2020–2023 were extrapolated.

GHG emissions. FAO Tier 1 CO2, CH4 and N2O (direct and indirect) country-level 
emissions data 2014–2020 were downloaded from FAOSTAT.84 FAO data estimate agrifood 
systems emissions under item codes 6669, 6516, 6517. Item 6516 attributes land-use change 
emissions to food production. Item 6517 attributes input emissions including energy use in 
synthetic fertilizer production, and post-farm-gate emissions including transport, retail and 
food waste disposal.85–87 Data are converted to metric tonnes for each gas, not CO2 equivalents.

Blue water use. Country-level blue water agricultural use data for 2014–2020 were 
downloaded from AQUASTAT.88 AQUASTAT does not disaggregate crop production water 
use into food and non-food uses. Non-food crops utilize an estimated 5–8 percent of crop 
area (see Table 1 in Deepak et al. [2022]),89 implying food production water use would 
be lower than the AQUASTAT amounts used. AQUASTAT does not estimate attributable 
agrifood systems water use for inputs and post-farm gate. Pre- and post-farm-gate water use 
would increase the attributable water use in agrifood systems.

Land-use conversion. Data on the conversion of forest and unmanaged grassland to 
cropland and pasture, and cropland and pasture to forest and unmanaged grassland over 
2014–2019 were obtained from the global HIstoric Land Dynamics Assessment (HILDA+) 
land-use transitions 1km dataset.7

Nitrogen emissions. Impacts and the nitrogen cascade of nitrogen kilograms (N-kg) 
of volatilized ammonia (NH3) and nitrogen oxides (NOx), and N-kg of leached or runoff 
reactive nitrogen are costed by the SPIQ-FS marginal cost dataset. NH3 and NOx to air from 
agricultural production and energy use in 2015 are obtained from the Emissions Database 
for Global Atmospheric Research version 5.0 (EDGARv5.0).90–94 Amounts of N-kg runoff to 
surface waters and leaching to deep waters of NO3- are calculated from IMAGE-GNM spatial 
datasets.95, 96 Data used based on agriculture sector reactive nitrogen emissions include 
non-food use (5–8 percent crop production by land area), but do not include emissions from 
livestock processing (less than 1 percent of agrifood system-attributable emissions by N-kg 
weight) or consumer waste (7–9 percent by N-kg weight). For consumer waste N emissions, 
a global spatial dataset of total nitrogen exported to inland and coastal waters in 2015 from 
treated and untreated human sewerage was used.97 Total nitrogen estimates for sewerage 
were converted into national average NO3- estimates using a spatial dataset estimating 
nitrate within total nitrogen in inland and coastal waters.98

Undernourishment. Data on the POU and number of undernourished (NOU) were 
obtained from FAOSTAT.99 The number of undernourished provides the headcount of 
undernourished in each country in the years 2014–2020. Sufficient calories are available 
worldwide for zero hunger. The POU indicates a failure in distribution of available supply. 
Undernourishment is attributed as an impact or failure of agrifood systems.

Poverty. Data on poverty gaps and the headcount of moderate poverty at the 3.65/day 
2017 PPP dollar income poverty line were obtained from the World Bank.100 Country-level 
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estimates of the share of agrifood systems workers in total employment were obtained from 
Davis et al. (2023).101 The share of agrifood systems workers in total employment is used 
as a proxy for the share of agrifood systems workers in moderate poverty. The proxy is an 
underestimate for most countries with high levels of moderate poverty, as evidence suggests 
that agricultural workers make up the predominant share of agrifood systems workers 
and have a higher share of workers in poverty than other sectors.102 Value added in in 
the US food manufacturing and food retail sectors alone was about 800 billion 2020 PPP 
dollars.103 Globally, expenditure on food is estimated at 9 trillion 2020 dollars in nominal 
terms.32 Poverty among agrifood systems workers was attributed as an impact or failure of 
agrifood systems due to the predominant share of poor workers worldwide in agricultural 
and agrifood systems activities, and an inability of workers to access or negotiate markets 
for a proportional share of value added in agrifood systems value chains.

Dietary patterns. Diets low in fruit, vegetables, nuts, wholegrains, calcium and protective 
fats and diets high in sodium, sugar-sweetened beverages, saturated fats and processed meat 
have been associated with preventable morbidity and mortality in national populations from 
neoplasms (cancers), cardiovascular disease and type II diabetes.14 The burden of preventable 
morbidity and mortality on human capital is measured in DALYs. DALY estimates from dietary 
risks for each country for 2014–2019 were accessed from the Global Burden of Disease (GBD) 
study.104 Similarly, diets in excess of recommended caloric intake based on age, sex and height 
and the eating of foods causing the impairment of metabolic functioning have contributed to 
the human burden of disease through high body mass index (BMI).10 DALY estimates for high 
BMI for 2014–2019 for each country were accessed from the GBD study.104 The GBD study 
uses mediation factors to avoid double attribution of DALYs to both high BMI and dietary 
factors such as diets low in wholegrains and diets high in sugar-sweetened beverages.105, 

106 Both factors share common intake factors, as well as metabolic pathways, leading to 
disease outcomes. Mediation factors were used to calculate DALYs due to dietary patterns 
as a combination of NCDs and high BMI. The corrections for double counting means that the 
DALYs represent one impact quantity per country per year, and the burden of disease from 
obesity and NCDs attributable to dietary patterns are not treated as two separate quantities.

Another complication is attributing the burden of disease to the activities of agrifood 
systems actors. For GHG emissions, nitrogen emissions, blue water withdrawal and 
land-use change, the production of impact quantities has a clearer attribution to the 
economic activity of agricultural producers, food manufacturers or food retailers. Broad, 
but arguable attributions are made to fully attribute undernourishment and poverty 
among agrifood systems workers to agrifood systems, broadening the scope to include 
distributors, commodity markets and government through policy. Producers generally do 
not choose undernourishment or poverty based on preferences believed to maximize their 
own welfare. The attribution of dietary patterns involves consumers and consumer surplus, 
and factors that affect disease outcomes for consumers, such as sedentary behaviour or 
socioeconomic status, combined with components of dietary patterns, such as excess fat or 
cereal intake.107, 108 We do not fully attribute present DALYs from high body mass index to 
the economic activity of agrifood systems actors, using a baseline 75 percent attribution of 
DALYs from high BMI to agrifood systems. Attribution of the burden of disease of dietary 
patterns to consumers, producers, manufacturers and retailers is debated in literature.50, 109–112 
The attribution amount was varied uniformly in uncertainty estimates between 50 percent  
and 100 percent.

Interpolation and extrapolation
Official data from FAOSTAT, AQUASTAT and the World Bank are often imputed, sometimes 
from the last reported value for countries in prior years. Estimating global quantities based 
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on national reporting is not precise. The interpolation of data and extrapolation for this 
study used similar simple methods. For most datasets, 2020 is the last reported year, 
and extrapolation to account for the COVID-19 pandemic is challenging.

The impact of the COVID-19 pandemic on the POU and NOU is estimated in FAO’s 
The State of Food Security and Nutrition in the World 2022.113 Missing years in the headcount 
of undernourished data were linearly interpolated up to the latest year reported in the FAO 
data. To extrapolate any missing data to 2021, subregional growth rates from Table 2 in 
The State of Food Security and Nutrition in the World 2022 report were applied to the latest 
year reported. To extrapolate after 2021, regional projected growth rates in the headcount 
of undernourished to 2030 using the COVID-19 scenario in Figure 6 of The State of Food 
Security and Nutrition in the World 2022 report were used. Guinea, Libya, Mozambique, 
Palestine, Somalia, South Sudan, the Syrian Arab Republic, Uganda and Zimbabwe do not 
report prevalence of undernutrition. Regional prevalence of undernutrition estimates for 
2014–2020 from Table 1 in The State of Food Security and Nutrition in the World 2022 
report were used as proxies for those countries.

The impact of the COVID-19 pandemic on poverty and projections to 2030 were 
considered by the World Bank.114 Data on the 3.65 2017 PPP dollar per day national poverty 
rate over 2005–2020 were downloaded from the World Bank.100 Some countries had data 
up to 2021. For those countries without data on the poverty rate in 2020, regional changes 
in poverty rates were used to project the impact of COVID-19 (COVID [base] Table B.6).115, 116 
Following World Bank projections for 2021, where data were missing, the geometric mean 
of the rate of change in the poverty rate over 2018–2020 was used to project 2020 to 2021, 
while the geometric mean of the rate of change in the poverty rate over 2015–2019 was used 
to project poverty rates in 2022 and 2023. United Nations population data117 and projections 
for 2016 to 2023 were multiplied against World Bank poverty rates100 to obtain national 
poverty headcounts of people below 3.65 2017 PPP dollars per day. Country-level estimates 
of the share of agrifood systems workers in total employment obtained from Davis et al. 
(2023) were treated as constant for projections.101

National quantities for GHG emissions, water use and land-use transitions were projected 
to 2023 using a simple one-lag first difference autoregression with exogenous real GDP per 
capita growth. World Bank real GDP national projections to 2023 in the June 2022 Global 
Economic Prospects report were used, which account for the impact of COVID-19.118 This 
basic forecast assumes the response to demand changes during COVID-19 is reflected in real 
GDP dependence. We use the same simple method for consumption impacts, assuming that 
changes in population dietary intake and BMI were driven by exogenous economic shocks. 
Land-use transition projections used vector autoregression with simultaneous and one-lag 
terms due to the interaction between transitions.

EDGAR v6.192 provides data up to 2018 on NH3 and NOx atmospheric emissions, but 
Integrated Model to Assess the Global Environment–Global Nutrient Model (IMAGE-GNM) 
global data are modelled based on geochemical and hydrological flows prior to 2015 and 
are not an empirical time series. Estimates of 2015 Nr emissions were carried forward to 
2020 using proportional increases in organic and inorganic total nitrogen from FAO data 
(FAOSTAT element 5157 and item 3102, elements 723801, 723802, 723811, 723812 and 
central product classification (CPC) item F1755) due to insufficient time-series data for 
extrapolation of either emissions or imputed national emission factors. National historical 
proportions of agricultural sector emissions for NH3 and NOx to air using EDGARv6.1 were 
used to apportion NH3 emissions to air and NOx emissions to air.3, 91 National historical 
proportions of agricultural sector Nr runoff and groundwater leaching from IMAGE-GNM 
were used to apportion Nr runoff and groundwater leaching.95, 96 As with GHG emissions, 
water use and land use, nitrogen emissions were then projected to 2023 using a one-lag first 
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difference autoregression with exogenous real GDP per capita growth. Nitrate emissions 
from human sewerage were carried forward from the 2015 estimate.

2.3	 Marginal cost calculations
Basic interpolation and extrapolation of annual totals of impact quantities for the years 
2016–2023 allows damage costs to be calculated using marginal damages (Annex 1). 
Marginal damage costs for the 154 countries are calculated using the SPIQ-FS version 0 
marginal damage cost model developed for the Food System Economic Commission.34–37, 119 
An overview of the SPIQ-FS cost models is available in Lord (2022).38 Current marginal 
damages are designed for counterfactual studies. Interpretation of cost estimates of current 
marginal damages applied to total annual production of quantities, rather than marginal 
changes in quantities in a counterfactual policy study or marginal changes along abatement 
pathways, should be limited to comparative discussion.120

SPIQ-FS version 0 makes estimates in 2020 PPP dollars of marginal damages to GDP 
PPP per unit of impact quantity.47, 48 Damages from GHG emissions, land-use change, 
water withdrawals, poor livelihoods and consumption in the years 2016–2023 manifest in 
present and future economies. Future damages must be discounted back to the “NPV” in 
the 2020 economy for comparison. A Ramsey social discount rate (SDR) is assumed with 
a time preference of 0 and constant marginal expected utility of consumption of 1.5.121, 122 

The literature on SDR is extensive,123, 124 but it is recommended to use a conservative value for 
intergenerational wealth transfer, as current wealth generation from food system activities 
may be endogenous to the risk of the ability to enjoy deferred resource use.51, 125, 126 For this 
reason, the choice of time preference is zero. The potential volatility of future welfare 
accrual and the nature of consumption as a proxy for welfare in a future with environmental 
and health damages means that lower settings for the elasticity of marginal utility are 
recommended.127–129 National GDP PPP growth rates, World Bank income group average GDP 
PPP growth rates or global GDP PPP growth rates are used in the discount rate, depending on 
the whether the cost models project and aggregate damages at national level (for example, 
the nitrogen cost models), by income group (for example, productivity losses from illness 
or informal care) or at global level (GHGs). Damage to future economies is estimated in 
present value, assuming business-as-usual future projections (IPCC shared socioeconomic 
pathway 2 [SSP2]).130

The SPIQ-FS model has macroeconomic parameters that can be varied, but impact 
quantities are calculated based on historical trajectories to 2020 and are generally not 
represented as parameters in the cost models endogenously. For very large changes in 
GDP PPP and other economic variables due to the produced impact quantities in the period 
2016–2023 that produce a deviation from SSP2 or historical trends on which the SPIQ-FS 
calculations are based, changes in the external costs that are borne by the economies of the 
present or future would need to be accounted for in changing income, supply and demand 
of goods and services, prices and costs as part of the equilibrium calculations in an extended 
computable general equilibrium model. The marginal costs are not varied for the change 
in impact quantities over the years 2016–2023. Annex 1 discusses the assumption of fixed 
marginal damage costs for 2016–2023.

Costing GHG emissions
SPIQ-FS resamples Interagency Working Group on the Social Cost of Greenhouse Gases 
(IWG-SCGHG) simulations of the social cost of greenhouse gases in 2020.131, 132 IWG-SCGHG 
simulations are provided for three discount rates (2.5 percent, 3 percent and 5 percent) and 
five socioeconomic scenarios used by integrated climate modelling groups to inform IPCC 
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reports.131 Using national GDP growth projections for SSP2 to 2100,130 global rates matched 
a discount rate of 3 percent; this was used for the social cost of GHGs resampling. A Ramsey 
SDR is assumed with a time preference of 0 and constant elasticity of marginal utility of 
1.5.121, 122 Given the 3 percent discount rate, social costs under the five scenarios were sampled 
uniformly for additional uncertainty estimates of economic futures under SSP2. Social costs 
represent marginal damage costs under a future pathway of optimal economic abatement.133 
Using the social cost reflects the increasing internalization of the costs of GHG emissions in 
emissions markets or state taxation.

IWG-SCGHG simulations provide social costs for the emission of a metric tonne of CO2, 
CH4 and N2O. CO2 equivalents are not used and the gases are costed separately.134 Converting 
to CO2 equivalents and multiplying by the social cost of CO2 would underestimate the total 
damages, as CH4, in particular, has shorter-term effects and future damages due to CH4 
are less discounted.134–136 Estimates in the reference were used to resample damages to 
agriculture and human mortality as proxies to damage from natural and human capital 
changes, respectively (Table 1).137

Costs of a GHG emission in a country are borne globally through the global atmospheric 
and then climatic changes. To attribute the cost of an emission as a cost to the country of 
emission, it is assumed that economic actors in that country are required to pay an amount 
per emission equal to the social cost of that GHG, and that the amount paid is dispersed 
perfectly to the cost bearers of the emission inside or outside the country.

Costing water withdrawals
SSP2 discount rates were used for impacts of future water scarcity. With no comprehensive 
global spatial estimates of the temporal allocation of water resources derived from economic 
use under SSP2 from a spatially explicit water withdrawal in 2016–2023,138 the costing model 
uses a Poisson process139 to temporally allocate the national effects of water withdrawal 
after 2023.37

Marginal damages for water withdrawal in SPIQ-FS are underestimates due to a lack of 
data on accrued loss from water scarcity and damages from the loss of environmental flows.140

Costing land-use changes
Costs of land-use changes in terms of lost, retained or returned ecosystem services are derived 
from the Ecosystem Services Valuation Database (ESVD).141, 142 Valuations derived from the 
ESVD are given in hectares/year. How many years into the future ecosystem services are lost 
or provided after land-use change in the current year is an additional assumption.143–145 No 
changes in service were assumed for 50–80 years after a transition from established habitat. 
This is a simplification. Transition in land use can occur from forestry or agricultural use, 
abandonment and then return to forestry or agricultural use. For abandoned land, evidence 
suggests an average of 14 years of returned ecosystem services.146 The value of the services in 
future years can also change due to shifts in the supply of and demand for ecosystem services, 
resulting in so-called environmental discount rates.147 Environmental discount rates were not 
used. National-level discount rates to 2100 under SSP2 were used to discount up to 80 years 
of lost ecosystem services for deforested land to obtain cumulative values for a hectare of 
land-use change.130 For abandoned land resulting in habitat return, a random period between 
7 and 28 years with a mean of 14 years (distributed to maximize entropy)148 of returning 
ecosystem services was used to obtain the cumulative value for a hectare of habitat return.

The HILDA+ dataset provides four categories of relevant land-use transition.

Forest habitat change provided by the model refers to deforestation or avoided 
deforestation. This is treated as a loss or retention, respectively, of forest ecosystem services. 
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The gain from agricultural services in transition to agricultural land use is assumed to be 
included in GDP growth. GDP PPP growth and the income-equivalent welfare it provides 
should be compared separately to welfare losses from damage costs. HILDA+ forest 
transitions do not distinguish between tropical and temperate forest habitat, nor managed 
or unmanaged habitat. Marginal costs for a hectare of land-use change from the SPIQ 
dataset and the ESVD distinguish between tropical and temperature forests. The ESVD 
uses The Economics of Ecosystems and Biodiversity (TEEB) classification and the Common 
International Classification of Ecosystem Services (CICES) v5.1 classification systems of 
ecosystems and services.149, 150 To reconcile cost and quantity categories, a marginal cost per 
hectare of forest habitat change was chosen randomly from tropical and temperate marginal 
cost samples in proportion to historical national tropical and temperature forest areas. For 
countries crossing tropical and temperate latitudes, this is an approximation in the absence 
of a historical dataset of tropical and temperate forest transitions to agricultural use.

HILDA+ provides data on the transition of unmanaged grasslands, which is a broad 
category including shrubland, grassland and unmanaged rangeland classifications in the 
ESVD. The ESVD has few valuations in these categories, even when national estimates are  
aggregated into Human Development Index (HDI) brackets. Global spatial datasets of land area 
and land transitions for habitats, such as the Worldwide Fund for Nature (WWF) ecoregions 
dataset151 and the HILDA+ transitions dataset,7 do not distinguish between grassland and 
shrubland. For  this study, the ecosystem service samples for these habitats are combined 
in SPIQ-FS to create a national-level cost quantity for “unmanaged grasslands” to match the 
HILDA+ dataset. The costing is conservative, as it excludes conversion or avoided conversion 
of inland wetlands and coastal wetlands, such as mangroves, for crops such as rice and 
palm oil.152

HILDA+ transitions data include the transition of cropland and pasture to forest or 
“unmanaged grasslands”. The provision of services from abandoned land can be of lower 
value than intact ecosystems,146, 153 with previously forested areas progressing through 
regenerative stages of grassland, shrubland and then reforestation.154, 155 Historically, land 
may transition back within decadal timespans.146 Given the nature of progressive stages of 
regeneration of both ecosystem and ecosystem services, we assume services provided by 
abandoned cropland and pasture return at a linear rate to an equivalent hectare of forest or 
unmanaged grassland after 20 years.153, 155, 156

GHG emissions from land-use change are counted under GHG emissions. The ESVD 
database includes carbon sequestration as an ecosystem services valuation. To the degree 
possible, carbon sequestration services were excluded from the valuation of service per 
hectare estimated from the ESVD to avoid double counting.

Costing nitrogen emissions
The SPIQ-FS version 0 nitrogen emissions costing model estimates marginal damages 
from the volatilization of NH3 (ammonia) and NOx (nitrous oxides) to air and the runoff of 
reactive nitrogen into surface waters and soil leaching, predominantly soluble NO3- (nitrate). 
Economic losses occur through labour productivity losses from air pollution, crop losses 
and the loss of ecosystem services.36 Spatial datasets on ecosystem distribution, population 
density, average temperate, deposition and riverine transport are used to transfer marginal 
damages derived from the European Nitrogen Assessment.157, 158

Costing undernourishment and dietary risk
FAO data provide changes in the NOU, which is the number of people in a national population 
with food intake below minimum energy requirements, as defined by FAO.159 SPIQ cost 
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modelling includes a model from the NOU to DALYs from energy-protein malnutrition 
based on WHO data.160–162 The productivity losses of energy-protein malnutrition are costed 
using historical International Labour Organization (ILO) labour productivity data.163 Labour 
productivity is used in place of GDP per capita to account for the caring burden of young and 
old-age dependents in households. The same productivity loss estimates are used to cost 
DALYs lost for neoplasms, cardiovascular disease and metabolic diseases attributable to 
diets low or high in risk factors and high BMI.

Uncertainty in the cost of the burden of protein–energy malnutrition is obtained directly 
from modelling residuals in a truncated quadratic regression between the HDI, POU and 
DALYs per capita obtained from historical WHO data. Uncertainty in the cost of the burden 
of dietary patterns is compounded from three sources. The GBD study includes uncertainty 
modelling in estimates of DALYs. The uncertainty around the mean estimate of DALYs for 
each country over 2014–2019 can be reconstructed from data from the GBD study104 of low, 
high and mean value using maximal entropy distributions. The DALYs from NCDs from 15 
dietary risk categories, the DALY attributable to sugar-sweetened beverages and the DALYs 
from high BMI are treated as random variables and added or subtracted as random variables 
according to published mediation factors.105 To account for uncertainty in mediation factors, 
the linear combination of random variables is randomly sampled between the maximum of 
each component (fully mediated) and their sum (published mediation). Lastly, to account for 
uncertainty in the attribution of cost to agrifood systems, the attribution is varied uniformly 
between 50–100 percent (mean 75 percent) for NCDs and 50–100 percent (mean 75 percent) 
for high BMI.

SPIQ-FS uses common modules for consistency. The same productivity loss estimate is 
used for costing air-pollution effects on humans from nitrogen pollution in the nitrogen cost 
model.71 The productivity loss module has productivity losses available at a national level or 
average at World Bank income group level. At a national level, the difference between LICs 
and HICs can be up to two orders of magnitude in PPP terms. Following the study,70 which 
used the same model for determining DALYs from dietary intake in this study, productivity 
loss per DALY is assigned based on World Bank average income group in 2020. This averages 
productivity losses for the poorest countries in the lower World Bank income group.

Since the marginal costs need to be consistent in the economic measure of damages in 
GDP PPP terms across costing models, the cost from the burden of disease uses only “indirect 
costs”.164 Direct costs such as treatment costs amount to economic exchanges between sectors 
and actors within the economy.17 They are not included as, outside of productivity losses, 
there are few estimates of the inefficiency in GDP terms of the direct costs flowing to the health 
sector from individuals or government. GDP PPP treats the population homogeneously, so it 
does not include potential welfare losses from direct costs being borne disproportionately by 
lower-income households.

Costing poverty
Data on the 3.65 2017 PPP dollar per day national poverty gap over 2014–2020 were 
downloaded from the World Bank and adjusted by inflation in PPP terms to 2020 PPP.100 
Poverty gaps were converted into income shortfall per annum. Income shortfall per annum 
was projected to 2023 alongside World Bank GDP projections using an equidistributed 
pass-through rate (Table B.6 of Yonzan, Lakner and Gerszon Mahler [2020]).114 The total 
attributable cost of poverty is defined as the amount society would pay for a cost-effective 
elimination of the economic damages of poverty. It is assumed that society would not make 
an additional dollar of payment per person if the average GDP PPP damage reduction per 
person were less than a dollar, and that such a payment is cost effective up to the international 
moderate poverty line. Under this assumption, the income shortfall per annum of agrifood 
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workers, which is taken as the cost of poverty for this study, underestimates the GDP PPP 
productivity damages of moderate poverty among agrifood workers.

Agrifood worker poverty is treated differently to other impact quantities. GHG emissions, 
nitrogen emissions and blue water withdrawals are all additional quantities. They are new 
emissions attributed to agrifood systems activities and are added to the existing stock of 
emissions in the atmosphere and so on. For natural capital, the impact models account for 
natural renewals or stocks, such as the replacement of withdrawn water by precipitation or 
the fluxes of CH4 between atmosphere and land. The total impact of the emission in a given 
year is costed in present value for its lasting effect on stocks and the value flows from changes 
in those stocks. Similarly, DALYs represent the additional burden of disease produced by 
consumption or caloric inadequacy in that year. The equivalent impact quantity for poverty 
is the production of new individuals in moderate poverty from agrifood systems activities in a 
given year. A similar renewal process applies to costing the quantity of additional individuals 
in poverty, in that economic development reduces the number of people in poverty in the 
future. The time the individual put into poverty in the given year spends in poverty needs to 
be modelled, and the present value of the total transfer of the income shortfall over the years 
they spent below the poverty line is the marginal cost.

Without an economic model attributing new individuals in poverty to agrifood systems 
activities and accounting for their fate over the years 2016–2023 and after, agrifood worker 
poverty was costed annually in the following way. All agrifood workers in poverty in a given 
year were treated as additions, so they were considered to be out of poverty at the end of the 
year and the new total of agrifood workers in poverty in the next year was put into poverty 
at the beginning of the year. Treating all individuals as additions in this manner meant they 
spent one year in poverty. The marginal damage cost used was the average income shortfall 
in that year, as obtained from World Bank data. Poverty was the only marginal cost used that 
varied each year over 2016–2023.

Estimates of economic risk
Marginal costs in SPIQ-FS are provided with uncertainty estimates in the form of parameterized 
probability distributions.34–37 This gives uncertainty estimates in the annual total cost 
attributed to agrifood systems activities (for example, costs due to changes in GHGs, costs 
due to changes in water withdrawal and costs due to changes in undernourishment). Poverty 
was costed directly using World Bank data on the poverty gap and was not modelled with 
uncertainty. SPIQ models some damage costs jointly within categories based on historical 
data. The impact of the integrated nature of changes in environmental, health and social 
conditions on economic costs when totalled across categories is reflected in SPIQ-FS by 
correlations in damage costs across categories.

Total estimates of the economic damages resulting from the annual production of 
environmental pollutants, undernourishment and dietary patterns are derived from jointly 
sampling marginal costs. Three sets of correlation are used to explore the joint nature of 
environmental, health and social conditions on total economic costs: no correlation, an 
expert-derived set of correlations and perfect correlation.

These three representations of risk from joint effects can be used to contrast, ignoring 
the joint effects of environment and health, with a case in which higher-than-expected 
environmental damage costs will always coincide with higher-than-expected health 
damage costs. The middle, expert-derived set of correlations represents a best estimate 
of the additional economic risk of joint effects.165 The full distribution of change in total 
economic costs may reflect risk in moving from the status quo, as well as the risk in sticking  
with it.
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2.4	 Limitations
GHG social cost modelling relies on the 2020 update to the US Environmental Protection 
Agency (EPA) IWG-SCGHG simulations, which originated from modelling in 2011 and a 
2016 update.131, 132, 134 Newer estimates from EPA modelling not finalized by the IGWG place 
the SCGHG up to 60 percent higher.137 The IGWG chose not to use GDP PPP damage functions 
in estimating economic damages within integrated assessment models, so they potentially 
undercount the payment transfer to cost bearers in the social cost calculation.

Water cost modelling is limited by a lack of data on the future magnitude and time of the 
deprivation of water for use in the production of economic value due to water withdrawal 
in the present. Cost estimates are not catchment based, something that will be a future 
improvement. Damages from reduced environmental flows are not calculated due to a lack 
of data. National aggregation is used and transboundary effects are not included. Water cost 
estimation is conservative to account for limitations.

Limitations on GHG and blue-water use quantity estimates are detailed in FAOSTAT and 
AQUASTAT documentation.

Nitrogen cost modelling involves benefit transfer from the European Nitrogen Assessment, 
accounting for national variation in ecosystem distributions, temperature, population 
density, background non-agricultural NH3, NOx and SOx emissions.166 The transfer for NH3 
and NOx uses additional data from the EASIUR model of over 3 000 US counties.167 Errors in 
transfer are the basis for uncertainty modelling. The large uncertainty in the results below 
for nitrogen and land-use change reflect the uncertainty introduced by benefit transfer, 
uncertainty on distribution of nitrogen species along the nitrogen cascade,73, 74 and lack 
of knowledge on the value of ecosystem services.168–170 Variation in the value of ecosystem 
services is large and introduces additional uncertainty in calculations of deposition and 
runoff, compounded with a lack of knowledge as to the damage to ecosystem productivity 
from nitrogen loading.74 Valuation in the ESVD database does not use a consistent valuation 
methodology,142, 171 requires benefit transfer from a lack of sufficient country data,172 and may 
overestimate GDP PPP damages. Nitrogen impact quantity data are modelled for 2015 and 
then imputed to 2023 from agricultural nitrogen use.

Undernourishment is based on loss of productivity from WHO estimates of DALYs 
due to protein–energy malnutrition.173 Other lost productivity or later-life socioeconomic 
consequences of undernourishment are not included. Nutrient deficiency and other disease 
outcomes from childhood malnutrition were not used.18 By the World Bank definition of 
moderate poverty,174 it is eliminated by transfer of the income shortfall to the moderate poor. 
Moderate poverty does not incorporate all economic consequences of income inequality.175, 176

The HILDA+ land-use transition dataset shows large land-use transitions for the United 
States of America and Australia. For Australia, there is less confidence in the HILDA+ 
classification algorithm due to potential misclassification of use of natural outback pastoral 
land. Trends in environmental cost production for Oceania have low confidence, due to 
variability in land-use transitions. Forest clearing without clear agricultural reuse is also 
an uncertainty when it comes to land-use transition in the Baltic states due to potential 
misclassification by the HILDA+ dataset. 
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K E Y  M E S S A G E S

The global hidden costs of agrifood systems in 2023 are likely to range between 
11 trillion and 15 trillion 2020 PPP dollars (the expected value is around 
13.1 trillion), equivalent to about 10 percent of global GDP.

Expected environmental costs averaged around 3 trillion 2020 PPP dollars over 
the 2016–2023 period. The expected costs of the burden of disease from diets 
averaged 9.3 trillion 2020 PPP dollars and the expected social hidden costs 
averaged 560 billion 2020 PPP dollars.

Trends show an upward trend in net costs from 2016 to 2023, driven primarily 
by productivity losses resulting from dietary patterns. Expected values of hidden 
costs increased 8.6 percent over 2019 to 2023.

HICs and UMCs bear approximately the same amount of hidden costs (between 
4.5 trillion and 5 trillion 2020 PPP dollars). LMCs bear about half of this amount, 
despite being the largest population group. Unsurprisingly, LICs generate the 
lowest expected value of hidden cost, at 381 billion 2020 PPP dollars in 2023, 
or 558 2020 PPP dollars per capita.

Health-related hidden costs are the largest across all world regions, with the 
exception of sub-Saharan Africa, where costs associated with moderate poverty 
and undernourishment are larger.

Data for 2016 to 2020 and trend extrapolation from 2021 to 2023 for quantities and 
marginal costs relating to external costs or market failures of global agrifood systems can be 
summarized in 37 cost items of combined activity, produced quantity and whether damages 
factor predominantly through natural or other capital changes (Table 1).

Eighteen categories relate to direct emissions of CO2, CH4 and direct or indirect emissions 
of NO2, per country per annum, and are broken down by FAOSTAT into elements that 
coincide with farm emissions, emissions from land-use change and emissions in inputs or 
post-farm gate.177

Eight categories relate to the land-use transition of forest habitat and other land habitat, 
per country per annum, as described in Section 2 (methodology).

Seven categories relate to nitrogen emissions of volatilized NH3 and NOx and runoff 
to surface waters or leaching to groundwater of Nr, per country per annum, originating 
from the application of synthetic fertilizer, livestock manure and its management, or human 
sewerage, as described in Section 2.

One category of crop blue water use is an aggregate of the water use in agriculture, 
per country per annum, from AQUASTAT.

One health category indicates the burden of disease per country from diets (food 
consumed in that year) in the form of a calculation of DALYs due to the combined effects of 
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high BMI and NCDs from diets low in fruits, vegetables, wholegrains, nuts and seeds, milk, 
omega 3 and 6 fatty acids, and diets high in transfats, processed meats and sodium.

One category indicates NOU as defined by FAO (insufficient caloric intake) in that country 
in that year.

One category indicates the number of agrifood workers in poverty (income below the 
World Bank 3.65 2017 PPP dollars a day poverty line) in that country in that year.

The FAO POU and moderate poverty, as defined by the World Bank, make up two 
categories characterized as distributional failures.

To facilitate the comparison of trade-offs between hidden cost production from 
environmental sources (E) with dietary patterns (H) and social distributional failures (S), 
34 categories are classified by cost type E, one category is classified by cost type H and two 
categories are classified by cost type S (Table 1).

Annex 3 provides each quantity (37) in Table 1, with the matching marginal cost for each 
country with data (154), for each year (8), for a total 45 584 individual cost items. Annex 4 
lists the 154 countries included in the analysis.

The matching marginal costs from SPIQ-FS are described in Annex 2, as are individual 
cost models in SPIQ-FS output samples of the uncertainty for 20 marginal cost items for 
154 countries (CO2 emission agricultural losses, CO2 emission mortality costs, CH4 emission 
agricultural losses, CH4 emission mortality cost, N2O emission agricultural losses, N2O 
emission mortality costs, blue water withdrawal, forest habitat loss, forest habitat return, 
other habitat loss, other habitat return, NOx emissions to air–air pollution, NOx emissions 
to air–deposition, NH3 emissions to air–air pollution, NH3 emissions to air–deposition, NO3- 
runoff to surface water, NO3- leaching to groundwater, persons undernourished, persons in 
moderate poverty, DALY health burden).

The samples within any one of the 20 marginal cost items for a country are already matched 
for correlations determined by the individual cost model in SPIQ-FS. For example, empirically, 
marginal costs of NH3 and NOx emissions in the same location are highly correlated,36 as 
both affect the same surrounding population by similar air pollution mechanisms, and the 
presence of either chemical reinforces the production of particulate matter. Annex B in the 
SPIQ-FS documentation describes joint sampling across the categories and countries by a 
block-correlation sort order method. This joint sampling has three settings for conducting 
sensitivity analysis, as described in Section 2 (methodology). One thousand joint samples 
were generated.

Multiplying a joint sample of the marginal cost items of Annex 2 matched against the 
quantities in Annex 3 provides 8 joint distributions for 5 698 random variables of cost (one 
set for each year and 8 × 5 698 = 45 584 cost items). For tractable computation, the 8 joint 
distributions for each year are not sampled as a single joint distribution of 45 584 random 
variables, potentially ignoring the effects of correlation over time.

Results below show the shape of the distribution of global total cost in a year obtained 
from aggregating (adding up) 5 698 uncertain cost items. The skewed shape and “fat tails” 
in the distribution reflect some of the influence of the joint sampling and correlation between 
cost items. It would be erroneous to assume the 5 698 cost items were independent; this 
assumption would generally lead to a normal distribution (bell shape) with lower variance 
as a result of aggregating so many items, due to the central limit theorem of statistics. 
The independence assumption would be an underestimate of economic risk.

Distributions of the hidden costs are provided, as well as the expected value and 5th and 
95th percentile statistics. The distributions and statistics are used to derive conclusions on 
trends and the annual magnitude of the hidden costs generated by agrifood systems from the 
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production of the listed impact quantities. We report on the estimated damage costs for the 
year 2023 and compare these with costs in 2020 and 2016 to indicate trends.

3.1	 Global net damages, economic risk and changes in risk from 
interactions in cost bearing from GHG emissions, nitrogen 
emissions, water use, land-use change, undernourishment and 
dietary patterns

Figures 3 and 4 plot histograms of the samples for the sum of the 5 698 cost items for the 
years 2016, 2020 and 2023 in their joint order. That is, the histograms approximate the global 
net cost of the production of the impact quantities attributed to agrifood systems in 2020 PPP 
dollars for the years 2016, 2020 and 2023, and the uncertainty in the global net cost.

FIGURE 3	 Trends in estimated costs of the production of the impact 
quantities over 2016–2023 of global agrifood systems in 
2020 PPP dollars 
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Notes: Mean refers to the expected value, and P5 and P95 refer to the 5th and 95th percentiles, 
respectively. Costs increased by 8.6 percent over 2019 to 2023. The change in the shape of the 
distribution, which is predominantly affected by trends in the individual impact quantities in this 
study, is not statistically significant.

Source: Author’s own elaboration.
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FIGURE 4	 Distribution of global hidden cost of the production of the impact 
quantities over 2023 attributable to global agrifood systems in 
2020 PPP dollars
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Notes: Solid lines show the expected global total cost of around 13.1 trillion 2020 PPP dollars. The 
distributions are right-skewed towards higher damages. The grey small-dashed lines show the 5th 
and 95th percentiles. Likely costs are in the range of 11 trillion–15 trillion 2020 PPP dollars. The 
distributions show a sensitivity test in the degree of correlation between the GHG, nitrogen, land-use 
change, water use, undernourishment and dietary pattern cost items. The general shape, statistics 
and spread of possible total cost values are approximately the same. Correlations are described in 
Annex B of the SPIQ-FS documentation, and the block-correlation matrices for the sensitivity tests 
are repeated in Annex B of this report. The full correlation (third panel) indicates a marginally higher 
risk, as expected in this study.

Source: Author’s own elaboration.
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Estimated global damages produced in 2023
The net global costs of agrifood systems in 2023 are likely to be in the range of 11 trillion 
to 15 trillion 2020 PPP dollars (Figure 3 and Figure 4). The expected value is around 
13.1 trillion 2020 PPP dollars. The distribution provides an idea of the spread of possible net 
global damages due to the high degree of uncertainty in the external costs of GHGs, nitrogen 
emissions, water withdrawal and so on. External costs are not currently being measured by 
accounting systems like other economic indicators, and the damages are estimated based 
on historical data and future projections. Observation of the damages is not an experiment 
that can be repeated often. Central measures of risk, such as most likely costs and average 
costs, support decision-making on frequently occurring and observed economic activities 
in visible market transactions. For low-observation and high-uncertainty features, such as 
external costs, central measures are supported by additional risk measures such as the 5th 
and 95th percentiles. For low-frequency observations, in a one-off game that is the unfolding 
future, the decision-maker has the additional consideration of whether they are willing to 
accept a 5 percent chance of loss above or below the corresponding percentiles of the net 
cost distribution.

Examining Figure 3 and Figure 4, due to the uncertainty in the cost of environmental, 
health and social impacts not visible to most economic markets, the net “hidden costs” 
produced by global agrifood systems have a 5 percent chance of being 16.5 trillion 2020 USD 
PPP or higher. Net “hidden costs” in the range of 11 trillion–15 trillion 2020 PPP dollars are 
the most likely outcome, with a 95 percent chance of being 11.3 trillion 2020 PPP dollars 
or higher. These estimates are robust to the uncertainty of costs coming from interactions 
between climate change, biodiversity loss and human health outcomes.

Trends from 2016
Figure 3 and Figure 4 show the global costs attributable to agrifood systems of producing the 
impact quantities in the years 2016, 2020 and 2030. The distributions are right-skewed to 
higher damages. It is not possible to use a statistical test to distinguish statistical significance 
in trends; the samples have been artificially generated and do not represent draws from a 
real population. The trends in the statistics of the distribution over 2016–2023 (Table 2) 
originate primarily from the change in the impact quantities; the marginal damage costs 
used are the same. Quantities from 2016 to 2020 are reported data from FAOSTAT and 
other sources. Quantities for 2021 to 2023 represent an extrapolation of the trend from 2014 
to 2020, accounting for national GDP shocks experienced over 2020 and 2021 due to the 
COVID-19 pandemic. Acknowledging the large uncertainty, the left-hand panel in Figure 5 
shows the trend in expected value of annual global costs from 2016 to 2023.

TABLE 2	 Statistics of the estimated global costs of producing the impact 
quantities in the years 2016–2023 attributable to agrifood systems 
in 2020 PPP dollars

Geography Name Category Year Mean P5 P95

Global World Total 2016 1.21E+13 1.03E+13 1.55E+13

Global World Total 2020 1.27E+13 1.08E+13 1.60E+13

Global World Total 2023 1.32E+13 1.13E+13 1.65E+13

Notes: Mean refers to the expected value, and P5 and P95 refer to the 5th and 95th percentiles, respectively.

Source: Author’s own elaboration.
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FIGURE 5	 Trends in total hidden costs and hidden costs by category,  
2016–2023
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environmental sources at around 3 trillion 2020 PPP dollars. Expected costs from dietary patterns 
increased 14 percent over the 2016–2023 period, in an upward trend from 8.6 trillion to 9.8 trillion 
2020 PPP dollars. The expected costs of undernourishment in the general population and moderate 
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Source: Author’s own elaboration.

	¡ Trends show an upward trend in net costs from 2016 to 2023, driven primarily by 
productivity losses of dietary patterns. Expected value of net costs increased by 
8.6 percent over 2019 to 2023 (Figure 5).

	¡ Estimates are robust to the potential uncertainty in costs coming from interactions 
between climate change, biodiversity loss and human health outcomes.

	¡ Trends in impact quantities are likely to be statistically significant given error bars in 
the reported data, but framing statistical significance of the trend in costs is challenging 
due to the uncertainty inherent in marginal costs (Figure 4) and the nature of the 
computational experiment. The most likely, expected and 95th percentile of costs have 
remained broadly in the region of 10 trillion–15 trillion 2020 PPP dollars for most likely 
costs, 12 trillion–13  trillion 2020 PPP dollars in expected costs, and in the range of 
15.5  trillion–16.5 trillion 2020 PPP dollars for the 95th percentile of costs over the 
2016–2023 period (Figure 3).
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	¡ The amount of 12 trillion–13 trillion 2020 PPP dollars is approximately 10 percent of 
global GDP in purchasing power terms in the 2016–2021 period.178 The global value 
added of agriculture, forestry and fishing is approximately 4.2 percent in the same 
period,178 and estimates put the additional value added of food manufacturing and food 
retail at 5 percent of global GDP PPP.27 Per day, damages sum up to 35 billion 2020 
PPP dollars, equivalent to a June 2022 Pakistan flood every day or a September 2022 
Hurricane Ian every four days.179, 180 Considering the ratio of hidden costs to value added 
is one measure of intensity of hidden costs, which, with the value of the ratio estimated 
for 2020 at about 1.09, would indicate that hidden costs of agrifood systems to global 
GDP PPP are greater than the current value added of agrifood systems.

	¡ Establishing a similar indicator for agrifood systems at a regional or country level is 
difficult. There are no general estimates for the value added of agrifood systems in 
national accounts, as it crosses the traditional sectors of agriculture, commodities, 
manufacturing and retail, and no agreed scope on whether inputs, including inputs such 
as marketing and financial services, should count under agrifood systems activities. 
Most of the cost production labelled “environmental” (CH4 emissions,2 N2O emissions,181 
nitrogen emissions,6 land-use change,7 blue water withdrawals)182 is predominantly due 
to agricultural activities, though agricultural producers are not the only beneficiaries. 
Section 4 provides alternative indicators for which data from national accounts or the 
World Bank are available for most countries and regions.

3.2	 Global net damages broken down by environmental sources, 
distributional failures, and dietary patterns

Subsequent sections show the breakdown of net global costs by categorization of impact 
quantity by cost production (column 1, Table 1). The methodology (Section 2) noted 
the ambiguity in classifying hidden costs depending either on source of cost production 
(for example, GHGs or nitrogen emissions), cost bearing (for example, agricultural losses or 
labour productivity losses), or the mechanisms that link cost production and cost bearing 
(for example, cardiovascular disease or habitat loss). Shown in Figure 6 are net costs and 
risk broken down into environmental (E) sources of external cost production in column 4 
in Table 1 (GHG emissions, nitrogen emissions, water use and land-use change), societal 
distributional failures (S) (undernourishment in the general population as defined by the FAO 
and moderate poverty in agrifood workers as defined by the World Bank) and dietary patterns 
resulting in obesity and NCD burdens (H). The purpose is a high-level comparison between 
damages that originate from environmental emissions or resource use versus distributional 
changes in social distributions and human health changes from food consumption. 
As noted earlier, human health impacts are also costed within distributional failures and 
environmental sources of external cost, so the breakdown should not be characterized as 
environmental, health and social impacts, but a breakdown by cost production sources that 
coincides with different types of market failure (externalities, inefficient distribution and 
imperfect information or rationalization).

	¡ External costs from environmental sources (E) are most likely in the range of 
2 trillion–3 trillion 2020 PPP dollars per annum. Costs of dietary patterns (H) are increasing 
and most likely in the range of 8 trillion–10.5 trillion 2020 PPP dollars over 2016–2023  
(Figure 6).

	¡ The modelled uncertainty in environmental costs sources is higher than using a resampling 
of the uncertainty in BMI and dietary risks from the GBD study (Figure 6). Later sections 
indicate how the very high uncertainty in the impact of Nr runoff contributes to the right 
skew of the E distribution.
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FIGURE 6	 Global net costs broken down environmental cost production (E), 
dietary patterns (H) and social distribution (S) components
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lines show the expected value. The grey small-dashed lines show the 5th and 95th percentiles.

Source: Author’s own elaboration.

	¡ The higher uncertainty and skew shape of the distribution indicate a higher risk in 
external costs from environmental sources of external cost and a higher expected value. 
Ninety-fifth percentiles for the environmental cost distributions (Table 3) show that 
external costs from environmental sources account for most of the risk in global net 
costs in this analysis.
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	¡ Due to the longer tail of environmental costs, the expected environmental costs averaged 
around 3 trillion 2020 PPP dollars over the 2016–2023 period. The expected cost of 
disease burden from diets averaged 9.3 trillion 2020 PPP dollars over the same period.

	¡ Environmental external costs (E) and productivity losses from dietary patterns (H) are 
generated by global food production and consumption. Costs of distributional failures 
(S) are associated with disadvantaged subpopulations and, averaging 560 billion 2020 
PPP dollars over the 2016–2023 period, are approximately 20 times less than those 
associated with the full market. Later results show the concentration of distributional 
failures in sub-Saharan Africa and southern Asia.

TABLE 3	 Global hidden costs of agrifood systems by category, 2016–2023 
(2020 PPP dollars)

Geography Name Category Year Mean P5 P95

Global World E 2016 2.96E+12 1.61E+12 6.07E+12

Global World S 2016 5.98E+11 5.89E+11 6.10E+11

Global World H 2016 8.58E+12 7.63E+12 9.59E+12

Global World E 2020 2.81E+12 1.47E+12 5.91E+12

Global World S 2020 5.71E+11 5.59E+11 5.85E+11

Global World H 2020 9.31E+12 8.28E+12 1.04E+13

Global World E 2023 2.85E+12 1.46E+12 6.05E+12

Global World S 2023 5.32E+11 5.21E+11 5.46E+11

Global World H 2023 9.81E+12 8.72E+12 1.10E+13

Notes: E = environmental; S = social; H = health. Mean refers to the expected value and P5 and P95 refer to 
the 5th and 95th percentiles, respectively.

Source: Author’s own elaboration.

Trends from 2016
Figure 5 and Figure 6 show the expected value and distribution of costs, respectively, 
for the environmental cost production (E), dietary patterns (H) and social distribution (S) 
components of the estimated global costs in the years 2016–2023. Trends in expected value 
show a reduction and levelling out of costs from environmental sources at about 3 trillion 
2020 PPP dollars. The next section indicates how environmental costs increased for GHG and 
nitrogen emissions, but decreased for land-use change. Costs from dietary intake increased 
14 percent over the 2016–2023 period, in an upward trend from 8.6 trillion to 9.8 trillion 
2020 PPP dollars. The expected cost of social indicators increased during the COVID-19 
pandemic in 2020 and 2021, but resumed a long-term downward trend after 2021, following 
FAO and World Bank projections.

3.3	 Global net damages by cost item category
Figure 7 shows the contribution to the net global costs of net global damages from GHG 
emissions, nitrogen emissions, dietary patterns, water use, land-use change and social 
indicators (undernourishment and poverty) and trends. Subsequent sections show the 
contribution from each GHG gas (CH4, CO2, N2O), type of land-use transition and form of 
reactive nitrogen (Nr) emission (NH3 methane to air, NOx to air, Nr to surface waters from 
cropland and human sewerage, and NO3- to groundwater).
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FIGURE 7	 Global net damages attributed to global agrifood systems in 
2023 in cost categories
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FIGURE 7 (cont.)	 Global net damages attributed to global agrifood systems 
in 2023 in cost categories
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Source: Author’s own elaboration.
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Comparison of damages produced in 2023
	¡ External costs from environmental sources in 2023 are largest from nitrogen emissions 

(most likely 0.5–2 trillion 2020 PPP dollars), GHG emissions (most likely 0.25–1 trillion 
2020 PPP dollars) and lost ecosystem services from land-use change (most likely  
0.25–1.2 trillion 2020 PPP dollars).

	¡ Due to the large uncertainty inherent in the cost of nitrogen emissions, the expected 
value is 1.5 times higher and the 95th percentile as a measure of economic risk of the 
cost of nitrogen emissions is twice as high as the respective measures of GHG emissions. 
The expected value of nitrogen emissions in 2023 is 1.54 trillion 2020 PPP dollars and 
the expected value of GHG emissions in 2023 is 0.88 trillion 2020 PPP dollars.

	¡ There are several explanations for this, which together with the uncertainty, indicate 
that GHG emissions and nitrogen emissions generate external costs of the same order. 
The large uncertainty inherent in nitrogen emissions arises from high uncertainty in the 
estimates of the value of ecosystem services,34 the lack of spatially explicit data on the 
damage to ecosystem service productivity from nitrogen loading,77, 166 and the compounding 
of uncertainty in the cost modelling along the nitrogen cascade.74 Uncertainty modelled 
for GHGs is limited to a more prescriptive parameter substitution in economic integrated 
assessment models.183–185 The integrated models do not account for PPP in aggregated 
global attributable GDP damages.183–185 Most nitrogen damage costs occur within the near 
future, unlike those of GHGs.186 Discounting has a greater effect on reducing the present 
value of GHG costs in comparison.51, 187 FAO estimates of GHG emissions are generally 
also slightly lower than other studies that attribute GHG emissions to agrifood systems.1

	¡ With these considerations, it is still a robust conclusion that the economic effects of 
nitrogen pollution by global agrifood systems are of the same magnitude as the economic 
effects of GHG emissions attributed to global agrifood systems.

Trends since 2016
	¡ Costs from dietary patterns trend upwards at a rate of 2 percent per year over 2016–2023 

(Figure 5), while costs from nitrogen emissions and GHG emissions trend upwards at a 
rate of 1 percent per year (Figure 8). On the surface, both nitrogen emissions and dietary 
patterns appear to offer joint negative abatement costs. Nitrogen use efficiency and the 
over-application of fertilizers imply that producers can save on nutrient input costs 
without sacrificing yield.188–190 Similarly, dietary change will result in better health for 
consumers and, in a developed world context, potential savings on food expenditure.23, 191 
A large body of literature exists on cost-effectiveness in public health interventions for 
obesity.192

	¡ Damages from land-use changes attributable to agriculture trend downwards, with a 
14 percent decrease in costs between 2016 and 2020. This is due to a decrease in forest-
to-pasture conversion (deforestation)9 and increases in abandoned agricultural land, 
according to satellite observations and the detection algorithms of HILDA+.7 From 2021 
to 2023, land-use changes were predicted to stabilize due to commodity price increases 
during the post-pandemic inflation period.

	¡ The shape of the probability distribution for the cost of land-use changes has a trend 
over 2016–2023. As abandoned agricultural land increases in terms of returned services, 
the land-use category of costs, as a sum of the positive random variables of the losses of 
established ecosystems and the negative random variables of the value from returning 
ecosystem systems, changes shape from being positively skewed to the sum of a positively 
and negatively skewed random variable (large mass on a wide central support and 
smaller, but fat tails to higher and lower costs).
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FIGURE 8	 Trends in expected hidden costs by category, 2016–2023
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Notes: Costs from land-use change decreased, potentially due to classification uncertainty in the 
Hilda+ dataset. Surges in moderate poverty among agrifood workers and undernourishment follows 
World Bank and FAO projections of the effect of the COVID-19 pandemic.

Source: Author’s own elaboration.
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3.4	 Global net damages by impact quantity
Figure 9 shows the contribution of costs of each GHG gas (CH4, CO2 and N2O) and form of 
Nr emission (NH3 methane to air, NOx to air, Nr to surface waters and human sewerage 
and NO3- to groundwater), the land habitat type under both loss and return, and the 
contribution of undernourishment and moderate poverty in agrifood workers individually. 
Costs associated with these quantities are aggregated across all countries to understand 
the net contribution to global hidden costs attributable to the annual operations of agrifood 
systems in 2016–2023.

FIGURE 9	 Net global costs of global agrifood systems estimated for 2023 
broken down by impact quantities with individual cost items
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Source: Author’s own elaboration.
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Comparison of damages produced in 2023
	¡ Costs from Nr in surface waters from agricultural land runoff, Nr in surface waters from 

human sewerage and NH3 emissions to air are the major contributors to the cost of 
nitrogen emissions (expected values 645 billion 2020 PPP dollars, 325 trillion 2020 PPP 
dollars and 366 trillion 2020 PPP dollars, respectively).

	¡ Costs from Nr surface runoff from agricultural land have the greatest uncertainty. The long 
tail towards higher damages of Nr runoff emissions means that there is considerable 
uncertainty and risk inherent in what the costs may be. 

	¡ Considering the mode of the Nr runoff from agricultural land and NH3 to air cost 
distribution, broadly, NH3 to air and Nr runoff are equal contributors to the cost of 
nitrogen emissions. Nr runoff from agricultural land and NH3 emission costs, individually, 
are comparable to the combined cost of farm emissions of CO2, CH4 and N2O using the 
social costs of the respective GHGs estimated by the US EPA intergovernmental panel 
modelling exercise.

Trends since 2016
	¡ Avoided costs from abandoned cropland and pasture have increased since 2016. Costs 

of the conversion of forest and other land habitats to pasture declined between 2016 
and 2020.

3.5	 Global net damages by cost item category and impact quantity, 
displaying only the expected value

Table 4 and Figure 10 summarize the breakdown of net global damages incurred or avoided 
under each policy scenario. The summary displays only the average value of the distributions 
in Figure 4 to Figure 9.

TABLE 4	 Summary statistics for the breakdown of external costs of global 
agrifood systems in 2023, by expected value, 5th percentile (P5) 
and 95th percentile (P95) in 2020 PPP dollars

Geography Category Year Mean P5 P95

Global Emissions (CH4): Farm gate 2023 2.15E+11 3.10E+10 5.77E+11

Global Emissions (CH4): Land-use 
change

2023 5.22E+09 7.52E+08 1.40E+10

Global Emissions (CH4): Pre- and 
post- production

2023 7.27E+10 1.05E+10 1.95E+11

Global Emissions (CO2): Farm gate 2023 6.70E+10 2.06E+09 2.04E+11

Global Emissions (CO2): Land-use 
change

2023 1.59E+11 4.90E+09 4.86E+11

Global Emissions (CO2): Pre- and 
post- production

2023 1.97E+11 6.05E+09 5.99E+11

Global Emissions (N2O): Farm gate 2023 1.57E+11 2.57E+10 4.02E+11

Global Emissions (N2O): Land-use 
change

2023 5.50E+09 8.99E+08 1.41E+10


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TABLE 4 (cont.)	 Summary statistics for the breakdown of external costs of global 
agrifood systems in 2023, by expected value, 5th percentile (P5) 
and 95th percentile (P95) in 2020 PPP dollars

Geography Category Year Mean P5 P95

Global Emissions (N2O): Pre- and 
post- production

2023 1.01E+10 1.64E+09 2.57E+10

Global Blue water withdrawal: 
Agriculture

2023 1.06E+11 8.95E+10 1.16E+11

Global Land-use change: Forest to 
cropland

2023 1.06E+11 6.66E+10 1.72E+11

Global Land-use change: Forest to 
pasture

2023 2.38E+11 1.32E+11 4.11E+11

Global Land-use change: Cropland to 
forest

2023 –1.54E+10 –2.80E+10 –8.56E+09

Global Land-use change: Pasture to 
forest

2023 –4.61E+10 –1.00E+11 –1.72E+10

Global Land-use change: Unmanaged 
grassland to cropland

2023 4.03E+10 1.83E+10 7.73E+10

Global Land-use change: Unmanaged 
grassland to pasture

2023 5.46E+10 2.31E+10 1.15E+11

Global Land-use change: Cropland to 
unmanaged grassland

2023 –7.55E+09 –1.62E+10 –3.21E+09

Global Land-use change: Pasture to 
unmanaged grassland

2023 –5.72E+10 –1.93E+11 –8.09E+09

Global Nitrogen emissions: NH3 
emissions to air

2023 4.02E+11 1.98E+11 7.76E+11

Global Nitrogen emissions: NOx 
emissions to air

2023 1.05E+11 6.87E+10 1.62E+11

Global Nitrogen emissions: NO3- 
leaching to groundwater

2023 2.97E+10 2.00E+10 3.98E+10

Global Nitrogen emissions: NO3- 
runoff to surface water

2023 6.83E+11 1.32E+11 2.19E+12

Global Nitrogen emissions: NO3- 
human sewerage in surface 
water

2023 3.21E+11 5.50E+10 1.16E+12

Global Agrifood worker poverty: 
Poverty headcount at 3.65 
2017 PPP dollars a day 

2023 4.81E+11 4.81E+11 4.81E+11

Global Burden of disease 
(undernourishment): Protein–
energy malnutrition

2023 5.18E+10 4.01E+10 6.57E+10

Global Burden of disease (dietary 
patterns): NCDs and high BMI 
from food consumption

2023 9.81E+12 8.72E+12 1.10E+13

Note: Mean values are expected values.

Source: Author’s own elaboration.  
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FIGURE 10	 Summary of breakdown of external costs of global agrifood 
systems by 26 cost items in 2023 using expected value
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Notes: Observing trends since 2016, the cost breakdown shows that, globally, nitrogen and GHG 
costs are increasing. The predominant and increasing nitrogen costs are NH3 to air and Nr in surface 
waters. Land-use costs are decreasing, apart from small increases in avoided costs from returned 
agricultural land, due to a reduction in the expansion of pasture and a smaller net contribution from 
abandoned agricultural land. Dietary patterns are increasing but not broken down into contributions 
from NCDs and high BMI, as the burden of disease is calculated using a joint mediation factor. 
Moderate poverty for agrifood workers is decreasing, but World Bank estimates and Figure 8 indicate 
that the COVID-19 pandemic set poverty reduction back seven to eight years.

Source: Author’s own elaboration.
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3.6	 Damages by World Bank income group
Annex 3 contains 2020 data on the region, subregion and the HDI of the 154 countries in the 
study. With the caveats discussed in the methodology (Section 2), cost bearing of the hidden 
costs attributable to agrifood systems can be analysed at regional, HDI and national level.

The World Bank classifies countries in 2020 as LIC, LMC, UMC and HIC by their gross 
national income (GNI) per capita, determined by the Atlas method in 2020 dollar exchange 
rates. LICs had GNI per capita below 1 045 2020 PPP dollars, LMCs had GNI per capita of 
1 045–4 095 2020 PPP dollars, UMCs had GNI per capita of 4 096–12 695 2020 PPP dollars 
and HICs had GNI per capita of more than 12 695 2020 PPP dollars.194 Annex 4 lists the 
154  countries in the study and their income group in 2020. Approximately 646 million 
people lived in LICs in 2020, predominantly in sub-Saharan Africa. About 3.35 billion people 
lived in LMCs, including India, and 2.48 billion people live in UMCs, including China and 
Brazil, in 2020. In 2020, the population of HICs was estimated at 1.2 billion people.

	¡ Trends in expected costs show that UMC and HIC countries bear approximately the 
same hidden costs of agrifood systems, between 4.5 trillion and 5 trillion 2020 PPP 
dollars (Figure 11). The estimated hidden cost production per capita in 2023 for HICs is 
3 872 2020 PPP dollars, while for UMCs, it is 2 093 2020 PPP dollars.

	¡ For LMCs, the expected hidden costs of agrifood systems are 2.5–3 trillion 2020 PPP 
dollars, half that of UMCs and LMCs, despite having the greatest population of the 
income group blocs. The LMC estimated hidden cost production per capita in 2023 is 
887 2020 PPP dollars. LICs generate the lowest expected value of hidden costs for 2023, 
at 381 billion 2020 PPP dollars, or 558 2020 PPP dollars per capita.

	¡ Table 5 compares the hidden cost production per capita with GDP PPP per capita in 
2020. The present and future economies of LICs face a higher relative economic burden 
from the hidden costs of agrifood systems. However, LICs also derive a greater share of 
GDP PPP from agrifood systems, so the ratio in Table 5 is not indicative of the economic 
benefits provided by agrifood systems compared with external costs, productivity 
losses and so on. Further indicators below perform a comparison of hidden costs with 
agriculture GVA.

	¡ Productivity losses from dietary patterns are increasing across all income groups, at 
similar rates of about 2 percent per year (Figure 11). External costs from environmental 
sources are highest for UMCs, the income group that includes China and Brazil, at more 
than 1.2 trillion 2020 PPP dollars. External costs from environmental sources for LMCs, 
at around 700–900 billion 2020 PPP dollars over 2016–2023, are trending upwards and 
are probably larger than external costs from environmental sources for HICs, which are 
likely to trend downwards.

	¡ The costs of moderate poverty among agrifood workers and undernourishment in 
the general population surged for all income groups in 2020 during the COVID-19 
pandemic, and World Bank and FAO projections expect them to resume a downward 
trend. World Bank analysis shows that some countries avoided expected large poverty 
increases through government intervention.116 In terms of total income shortfall to the 
3.65 2017 PPP dollar poverty line, the LMC shortfall was falling at the fastest rate before 
the COVID-19 pandemic and was most shocked by it in 2020. LICs are unchanged in 
terms of poverty alleviation, in part due to the concentration of extreme poor in fewer 
countries with entrenched poverty.116 LMCs have double the total income shortfall of 
LICs, but nearly three times the population. On a per capita basis, in terms of income 
shortfall due to moderate poverty and undernourishment, LICs bear the highest burden 
of distributional failure, with a non-decreasing trend.
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FIGURE 11	 Trends in the environmental (E), dietary pattern (H) and 
distributional failure (S) cost production components of the 
estimated global costs in 2016–2023 by World Bank income group

A. TOTAL HIDDEN COSTS B. HEALTH HIDDEN COSTS
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Notes: All values are expected values. Trends show increasing productivity losses from dietary 
patterns across all income groups. External costs from environmental sources are greater in LMCs 
than HICs and trending upwards. For distributional failures, decreases in costs for LMCs were halted 
by the COVID-19 pandemic, but then resumed. Costs of undernourishment and moderate poverty 
among agrifood workers in LICs are non-decreasing.

Source: Author’s own elaboration.
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TABLE 5	 Expected value of hidden cost production and bearing by 
World Bank income group per capita

Income group Year Population 
(million)

Hidden costs 
PPP per capita

GDP PPP 
per capita Ratio

Low-income 
countries

2020 646 575  
(465, 781)

2 053 0.27  
(0.22, 0.37)

Low- to middle-
income countries

2020 3 335 848  
(685, 1 161)

7 154 0.12  
(0.10, 0.16)

Upper-middle-
income countries

2020 2 475 2 015  
(1 482, 2 846)

18 019 0.11  
(0.08, 0.16)

High-income 
countries

2020 1 190 3 785  
(3 217, 4 451)

50 000 0.08  
(0.06, 0.09)

Notes: A comparison of the hidden costs produced by agrifood systems in 2020 in GDP PPP with GDP PPP 
per capita in 2020 shows that present and future economies of LICs face a higher relative economic burden 
from the hidden costs of agrifood systems. Mean values are expected values in 2020 PPP dollars, with 5th 
and 95th percentiles in brackets.

Source: Author’s own elaboration.

Figure 12 and Figure 13 show the shares of and uncertainty inherent in GHG, nitrogen, 
land-use change and blue water withdrawal external costs, moderate poverty among 
agrifood workers, undernourishment distributional failures and productivity losses from 
dietary patterns in the total hidden costs of agrifood systems for World Bank income groups.

FIGURE 12	 Net global damages in 2023 broken down by cost category and 
World Bank income group
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FIGURE 12 (cont.)	 Net global damages in 2023 broken down by cost category 
and World Bank income group

C. UPPER-MIDDLE-INCOME COUNTRIES ANNUAL COST BY COST PRODUCTION CATEGORY 
 WITH UNCERTAINTY ESTIMATE
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D. HIGH-INCOME COUNTRIES ANNUAL COST BY COST PRODUCTION CATEGORY WITH 
 UNCERTAINTY ESTIMATE
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Notes: The figures are boxplot representations of the components of the distribution of global net 
costs according to scenario, development bloc and cost category. Boxplots show the median as a 
vertical line, the interquartile range as a wider line and the 5th to 95th percentile range as a thin line.

Source: Author’s own elaboration.

	¡ Total expected costs generated by LICs in 2023 are 381 billion 2020 PPP dollars, with 
36 percent of expected costs (136 billion 2020 PPP dollars) from environmental sources, 
14 percent from productivity losses resulting from dietary patterns (56 billion 2020 
PPP dollars) and 50 percent from poverty and undernourishment (190 billion 2020 PPP 
dollars) (Figure 13). The two largest costs for LICs are GHG emissions (105 billion 2020 
PPP dollars) and poverty among agrifood workers (179 billion 2020 PPP dollars). Unlike 
UMCs, only a small proportion of costs (15 billion 2020 PPP dollars) are associated with 
nitrogen pollution.

	¡ Total expected costs generated by LMCs in 2023 are 2 970 billion 2020 PPP dollars, with 
27 percent of expected costs (816 billion 2020 PPP dollars) from environmental sources, 
62 percent from productivity loss from dietary patterns (1 830 billion 2020 PPP dollars) 
and 11 percent from poverty and undernourishment (321 billion 2020 PPP dollars) 
(Figure 13). LMCs’ largest external environmental costs are GHG emissions (274 billion 
2020 PPP dollars) and nitrogen pollution (418 billion 2020 PPP dollars). Both are 
comparable to or larger than the income shortfall among agrifood workers (286 billion 
2020 PPP dollars). In LMCs, productivity losses from dietary patterns (1830 billion 2020 
PPP dollars) already eclipse productivity losses due to poverty and undernourishment.

	¡ Total expected costs generated by UMCs in 2023 are 5 190 billion 2020 PPP dollars, 
with 24.5 percent of expected costs (1 260 billion 2020 PPP dollars) from environmental 
sources, 75 percent from productivity losses due to dietary patterns (3 910 billion 2020 
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PPP dollars) and 0.5 percent from poverty and undernourishment (21 billion 2020 PPP 
dollars) (Figure 13). UMCs’ largest external environmental costs are GHG emissions 
(324 billion 2020 PPP dollars) and nitrogen pollution (851 billion 2020 PPP dollars).

	¡ Total expected costs generated by HICs in 2023 are 4 650 billion 2020 PPP dollars, 
with 14 percent of expected costs (634 billion 2020 PPP dollars) from environmental 
sources, 75 percent from productivity loss from dietary patterns (4 010 billion 2020 PPP 
dollars) and less than 0.1 percent from poverty and undernourishment (1 billion 2020 
PPP dollars) (Figure 13). UMCs face approximately equal external environmental costs 
from GHG emissions (185 billion 2020 PPP dollars), nitrogen pollution (257 billion 2020 
PPP dollars) and land-use change (169 billion 2020 PPP dollars).

	¡ Environmental costs for LMCs and UMCs are generally higher than for HICs and have 
greater uncertainty. Additional economic risk for LMCs and UMCs comes from external 
environmental costs due to a long tail of damages from Nr runoff and GHG emissions 
(Figure 12). Nr runoff in China forms a substantial proportion of the expected damages 
and economic risk in UMCs.

FIGURE 13	 Summary of breakdown of expected hidden costs of agrifood 
systems by World Bank income group in 2023
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Notes: Overall expected damages incurred are greater for UMCs. UMCs have the highest proportion 
of nitrogen and GHG costs. GHGs form the greatest share of environmental external costs in LICs.

Source: Author’s own elaboration.
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The next section shows that within income groups, the cost bearing of external costs 
from environmental sources, productivity losses from dietary patterns and hidden costs 
of distributional failures are asymmetric. Even within regional breakdowns, the country-
level analysis shows that the cost bearing by countries, such as China and India, is not 
representative of all UMC- or LMC-bloc countries, respectively.

3.7	 Damages by region, by Human Development Index and by country
FAO chose eight regions to complement the breakdown of the hidden costs of agrifood systems 
by World Bank income group. Annex 4 lists the 154 countries in the study and their region. 
We omit figures showing the distributions of hidden costs aggregated by region. The risk 
profile follows broadly the order of the expected value in Figure 14. A higher expected value 
corresponds mostly to the large uncertainty and higher risk of incurred damages. Exceptions 
to this are noted below.

FIGURE 14	 Summary of breakdown of expected hidden costs of agrifood 
systems in 2023 at the regional level
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Distribution of damages by region
	¡ Examining the distributions and considering uncertainty, productivity losses from dietary 

patterns are the largest category of hidden costs across all regions except sub-Saharan 
Africa. In sub-Saharan Africa, environmental externalities (estimated 231 billion 2020 PPP 
dollars in 2023) are of the same order of productivity loss as dietary patterns (estimated 
242 billion 2020 PPP dollars in 2023). Since 2016, productivity losses from dietary patterns 
have grown to be on par with the costs of agrifood worker poverty and undernourishment 
in sub-Saharan Africa. Agrifood worker poverty and undernourishment in the general 
population remain higher economic costs in sub-Saharan Africa in 2023 (285 billion 2020 
PPP dollars). Southern Asia is the other region with significant agrifood worker poverty 
and undernourishment (194 billion 2020 PPP dollars in 2023), but productivity losses 
from dietary patterns are larger (1 004 billion 2020 PPP dollars in 2023). Productivity 
losses from dietary patterns increased 20 percent from 2016 to 2023 in southern Asia.

	¡ Eastern and Southeastern Asia, the most populous region, with 2.25 billion people in 
2020, has the largest total productivity losses from dietary patterns, at 3 017 billion 2020 
PPP dollars in 2023. Productivity losses in Eastern and Southeastern Asia from dietary 
patterns equated to 1 268 2020 PPP dollars per capita in 2020.

	¡ Europe and North America have expected productivity losses from dietary patterns in 
the order of 2 376 billion 2020 PPP dollars and 1 517 billion 2020 PPP dollars in 2023, 
respectively, at 3 167 PPP dollars per capita and 3 905 PPP dollars per capita in 2020, 
respectively.

	¡ Southern Asia, Eastern and Southeastern Asia, and Latin America and the Caribbean have 
the largest environmental external costs in either absolute or relative terms (estimated at 
406, 780 and 493 billion 2020 PPP dollars, respectively, in 2023). The largest external 
cost components are GHG and nitrogen emissions (nitrogen emission costs are estimated 
at 208, 539 and 312 billion 2020 PPP dollars, respectively, in 2023). Expected values of 
external costs from nitrogen emissions in the three regions constitutes 69 percent of the 
global cost of agrifood systems nitrogen emissions.

	¡ Land-use changes in Oceania (Australia and New Zealand), as estimated by the 
HILDA+ dataset, contributed most to the reduction in land-use change costs over the 
2016–2023 period.

Figure 15 examines the expected costs in 2023 for sub-Saharan Africa.

Distribution of damages in sub-Saharan Africa
	¡ Agrifood worker poverty and undernourishment in the general population remain 

higher economic costs to sub-Saharan Africa (285 billion 2020 PPP dollars in 2023) 
than productivity losses from dietary patterns (242 billion 2020 PPP dollars in 2023). 
Agrifood worker poverty and undernourishment remained static over the period due to 
the COVID-19 pandemic, while productivity losses from dietary patterns are estimated to 
increase by 14.5 percent over the 2016–2023 period.

	¡ Assuming a continuation of the same rate of increase in productivity losses from dietary 
patterns, by 2030, or earlier if agrifood worker poverty and undernourishment resume 
reduction rates similar to those before 2016, productivity losses from dietary patterns 
in sub-Saharan Africa will be a greater cost to society than agrifood worker poverty and 
undernourishment in the general population.

	¡ The costs of GHG emissions remained the largest category of external environmental 
costs for sub-Saharan Africa (estimated at 148 billion 2020 PPP dollars in 2023).  
Farm-gate CH4 emissions, CO2 emissions from land-use changes (deforestation) and 



45

3    Results

N2O from fertilizer production are the largest contributors to the external costs of GHGs 
across sub-Saharan Africa (Figure 15).

FIGURE 15	 Summary of breakdown of expected hidden costs of agrifood 
systems for sub-Saharan Africa in 2023
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Notes: Agrifood worker poverty and undernourishment remain higher economic costs to society 
than productivity losses from dietary patterns. Compared with 2016, poverty and undernourishment 
remained static over the period due to the COVID-19 pandemic, while productivity losses from dietary 
patterns increased 14.5 percent. The costs of GHG emissions increased as the largest contributor to 
external costs from environmental sources, from 132 billion 2020 PPP dollars to 148 billion 2020 
PPP dollars. The costs of GHG emissions remained the largest category of external costs.

Source: Author’s own elaboration.

Distribution of damages by HDI
The distribution of expected costs over the HDI show no major trends over 2016 to 2023. 
The shape of the distribution – why brackets of HDI 0.75 to 0.8 (which include countries such 
as China and Brazil) have high nitrogen emissions or GHG emissions – is better explained by 
the country-level disaggregation below.
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Distribution of damages by country
The countries with the highest net hidden costs generated by agrifood systems are the world’s 
largest food producers and consumers (Figure 16). The United States of America (around 
1.64 trillion 2020 PPP dollars) and the BRIC countries – in order of expected costs, China 
(2.67 trillion 2020 PPP dollars), India (1.17 trillion 2020 PPP dollars), Brazil (0.53 trillion 
2020 PPP dollars) and the Russian Federation (0.52 trillion 2020 PPP dollars) – are the top 
generators of costs in 2023 and are mostly unchanged in that order over the 2016–2023 
period (Table 6). Hidden costs for China, India, the Russian Federation and the United States 
of America are predominantly (more than 75 percent) from dietary patterns. Brazil is the 
exception, with 45 percent of hidden costs being external costs from environmental sources. 
As a bloc, the European Union Member States would appear in third position, with total 
hidden costs of agrifood systems of 1.82 trillion 2020 PPP dollars in 2023, of which 284 
billion 2020 PPP dollars are from environmental sources and 1.54 trillion 2020 PPP dollars 
(84 percent of total costs) are productivity losses from dietary patterns.

FIGURE 16	 Countries ranked by annual hidden costs produced by national 
agrifood systems for 2023
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Table 1 (GHG emissions, nitrogen emissions, water use and land-use change), productivity losses 
from dietary patterns (H) and distributional failures (S) (undernourishment, as defined by FAO, and 
agrifood worker moderate poverty, as defined by the World Bank). Listed on the x-axis are six 
countries with the lowest net hidden costs and 24 countries with the highest net hidden costs.

Source: Author’s own elaboration.
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TABLE 6	 Countries with the highest expected hidden costs of agrifood 
systems in 2023

United 
States of 
America 

China European 
Union India Brazil Russian 

Federation

Total (T) 1.64E+12 2.67E+12 1.82E+12 1.17E+12 5.33E+11 5.21E+11

Environmental (E) 2.27E+11 4.95E+11 2.84E+11 2.87E+11 2.42E+11 1.22E+11

Social (S) 9.90E+07 1.21E+09 3.31E+08 1.51E+11 4.53E+09 0.00E+00

Health (H) 1.41E+12 2.17E+12 1.54E+12 7.31E+11 2.87E+11 3.99E+11

E/T x100 14 19 16 25 45 23

S/T x100 0 0 0 13 1 0

H/T x100 86 81 84 63 54 77

Climate 5.61E+10 1.07E+11 6.29E+10 8.12E+10 7.62E+10 3.00E+10

Water 6.02E+09 8.43E+09 5.02E+09 3.63E+10 3.35E+07 1.16E+07

Land 1.05E+11 4.49E+09 8.68E+10 2.55E+10 5.36E+09 1.15E+10

Nitrogen 6.03E+10 3.75E+11 1.30E+11 1.44E+11 1.61E+11 8.04E+10

Poverty 9.90E+07 1.21E+09 3.10E+08 1.36E+11 3.48E+09 0.00E+00

Undernourishment 0.00E+00 0.00E+00 2.09E+07 1.48E+10 1.05E+09 0.00E+00

Dietary patterns 1.41E+12 2.17E+12 1.54E+12 7.31E+11 2.87E+11 3.99E+11

Source: Author’s own elaboration.

Nitrogen emissions are the largest class of environmental cost for all countries with 
the highest costs (Table 6). China (estimated 375 billion 2020 PPP dollars in 2023), Brazil 
(estimated 161 billion 2020 PPP dollars in 2023), India (estimated 144 billion 2020 PPP 
dollars in 2023) and the European Union (estimated 130 billion 2020 PPP dollars in 2023) 
have the largest external cost production, and likely cost bearing, from nitrogen emissions 
from agrifood systems. In the United States of America, the expected cost of nitrogen 
emissions (60 billion 2020 PPP dollars) and GHG emissions from agrifood systems (56 billion 
2020 PPP dollars) are comparable. These figures are expected values, which are skewed 
towards higher damages for nitrogen emission due to the larger uncertainty involved.

Order-of-magnitude costs for all countries in terms of expected net hidden costs, 
environmental sources of external costs, productivity losses from dietary patterns, and 
costs of poverty among agrifood workers and undernourishment in the general population 
are displayed as spatial maps in Figure 17. No significant spatial trends in terms of 
order-of-magnitude changes over 2016–2023 are discernible. India (136 billion 2020 
PPP dollars estimated in 2023) and central sub-Saharan Africa have the largest costs of 
poverty and undernourishment. After India and sub-Saharan Africa, Indonesia, Brazil and 
Mexico (in order of magnitude) show residual expected costs of agrifood worker poverty 
and undernourishment. After the United States of America and the BRIC countries, 
Indonesia, Japan, Mexico and western Europe face the highest productivity losses from  
dietary patterns.
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FIGURE 17	 Spatial distribution of the expected hidden costs of global 
agrifood systems in 2023

A. SPATIAL DISTRIBUTION OF TOTAL COSTS
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FIGURE 17 (cont.)	 Spatial distribution of the expected hidden costs of global 
agrifood systems in 2023

C. SPATIAL DISTRIBUTION OF ENVIRONMENTAL COSTS
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D. SPATIAL DISTRIBUTION OF HEALTH COSTS
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Notes: Final boundary between the Sudan and South Sudan has not yet been determined. Dotted 
line represents approximately the Line of Control in Jammu and Kashmir agreed upon by India and 
Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties. 

Source: United Nations Geospatial. 2020. Map geodata [shapefiles]. New York, USA, United Nations, 
modified by the author.
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In terms of risk, the tail of total costs is much “fatter” for China than the United States of 
America due to large quantities of reactive nitrogen in surface water, resulting from runoff 
from agricultural land and human sewerage, and the uncertainty inherent in external costs. 
Using the 95th percentile of hidden costs as a risk indicator, China’s economic risk from 
agrifood systems activities is up to two times higher than expected values (a 95th percentile 
of 4 trillion 2020 PPP dollars in net hidden costs and a 95th percentile of 1.6 trillion 2020 PPP 
dollars in nitrogen emissions estimated for 2023). The economic risk in China from external 
nitrogen pollution is 10 times larger than for the United States of America a (95th percentile 
of 2.3 trillion 2020 PPP dollars in net hidden costs and a 95th percentile of 147 billion 
2020 PPP dollars in nitrogen emissions estimated for 2023). Expected value as a measure 
of central tendency can be sensitive to outliers. Nitrogen emissions and land-use change 
measured using the HILDA+ dataset, combined with the large uncertainty inherent in the 
value of ecosystem services, introduces a large skew in the distribution of hidden costs. 
Using the median as a central measure, China has larger hidden costs (median 2023 hidden 
costs of 2 518 billion 2020 PPP dollars) than the United States of America (median 2023 
external costs of 1 602 billion 2020 PPP dollars). Median external costs of agrifood systems 
nitrogen emissions in 2023 were almost three times higher in China (112 billion 2020 PPP 
dollars) than the United States of America (40 billion 2020 PPP dollars).

Figure 18 displays as spatial maps the external environmental costs from GHG emissions, 
nitrogen emissions and land-use change, and Figure 19 their expected value for a selected 
number of countries in 2023. Figure 20 breaks down the external environmental costs of 
countries with the largest external costs in 2023.

	¡ Farm-gate CH4 emissions (by order of magnitude, China, Brazil, India, United States of 
America and Pakistan), CO2 emissions from deforestation (Brazil, Democratic Republic of 
the Congo, Colombia and United Republic of Tanzania) and CO2 emissions from fertilizer 
production, manufacturing, retail and consumption (pre-and post-farm gate) (China, 
Germany, India, Iran, Japan, Russian Federation and United States of America) are the 
pre-dominant forms of emission contributing to external costs (left panel, Figure 20).

	¡ N2O farm-gate emissions add to the significant costs of other forms of nitrogen pollution 
in Brazil, China, India and the United States of America. N2O and CH4 external costs 
outweigh the costs of CO2 emissions in many of the larg-est producers (Argentina, Brazil, 
China, India, Mexico, Pakistan and United States of America).

	¡ Deforestation for agricultural land expansion, in the form of conversion of forest habitat 
to cropland and pasture, is the predominant contributor to external costs from land-use 
change (middle panel, Figure 20). For the United States of America and Australia, 
the Hilda+ algorithm detects frequent transitions in land use, potentially conflat-ing 
management practices with habitat change. The external costs, or avoided external 
costs, of land-use change are likely overestimated in 2016, with the assumptions in the 
methodology (Section 2) of average periods of habitat loss.

	¡ Ammonia agrifood emissions (NH3) and NO3- emissions to surface waters from agricultural 
runoff produce are the predominant costs across all countries with high external costs 
of agrifood nitrogen emissions (right panel, Figure 20). NH3 emissions predominate in 
jurisdictions, such as western Europe, with existing regulations on NOx emissions and 
Nr in surface waters.
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FIGURE 18	 Spatial distribution of the expected external costs of global 
agrifood systems in 2023 for environmental impact quantities

A. SPATIAL DISTRIBUTION OF CLIMATE COSTS
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FIGURE 18 (cont.)	 Spatial distribution of the expected external costs of global 
agrifood systems in 2023 for environmental impact quantities

C. SPATIAL DISTRIBUTION OF LAND COSTS
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Notes: Final boundary between the Sudan and South Sudan has not yet been determined. Dotted 
line represents approximately the Line of Control in Jammu and Kashmir agreed upon by India 
and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties. 
Shown are environmental costs for each country by cost item category (column 1 in Table 1, GHG 
emissions, N emissions, water use, land-use change). 

Source: United Nations Geospatial. 2020. Map geodata [shapefiles]. New York, USA, United Nations, 
modified by the author.
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FIGURE 19	 Expected hidden costs by country and cost item category in 2023

A. GREENHOUSE GAS EMISSIONS COSTS BY COUNTRY
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FIGURE 19 (cont.)	 Expected hidden costs by country and cost item category 
in 2023

E. POVERTY IN AGRIFOOD WORKERS COSTS BY COUNTRY
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G. DIETARY PATTERNS COSTS BY COUNTRY
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Notes: Shown are net costs for each country by cost item category (column 1, Table 1, external 
costs from GHG emissions, nitrogen emissions, water use, land-use change, productivity losses from 
dietary patterns, and costs of moderate poverty among agrifood workers and undernourishment in 
the general population). Listed on the right of the x-axes are 24 countries with the highest net cost. 
Listed on the left of the x-axes are six countries with the highest net avoided damages.

Source: Author’s own elaboration.
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FIGURE 20	 Expected hidden costs by country and cost item category in 2023

A. GREENHOUSE GAS EMISSIONS ITEM COSTS BY COUNTRY
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B. LAND-USE CHANGE ITEM COSTS BY COUNTRY
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Emissions (CH4): Farm gate
Emissions (CO2): Farm gate
Emissions (N2O): Farm gate

Emissions (CH4): Land-use change
Emissions (CO2): Land-use change
Emissions (N2O): Land-use change

Emissions (CH4): Pre- and post-production
Emissions (CO2): Pre- and post-production
Emissions (N2O): Pre- and post-production

Land-use change: Cropland to forest
Land-use change: Forest to cropland
Land-use change: Pasture to forest
Land-use change: Unmanaged grassland to cropland

Land-use change: Cropland to unmanaged grassland
Land-use change: Forest to pasture
Land-use change: Pasture to unmanaged grassland
Land-use change: Unmanaged grassland to pasture

Nitrogen emissions: NO3 – human sewerage in surfacewater
Nitrogen emissions: NO3 – runoff to surfacewater

Nitrogen emissions: NH3 emissions to air
Nitrogen emissions: NO3 – leaching to groundwater
Nitrogen emissions: NOx emissions to air
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Notes: Shown are net costs for each country by cost item (column 4, Table 1: GHG cost items broken 
down into individual gases and farm gate, land-use change, or pre- and post-farm-gate emissions; 
land-use change by habitat loss or return from cropland or pasture; and nitrogen by NH3 or NOx 
emission to air or Nr in surface waters from agricultural runoff or human sewerage). Listed on the 
right-hand side of the x-axes are the 24 countries with the highest net cost in the cost item category. 
Listed to the left of the x-axes are the six countries with the lowest net cost in the cost item category.

Source: Author’s own elaboration.
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4	 Comparative indicators of hidden 
costs of agrifood systems  

K E Y  M E S S A G E S

Combining net hidden costs with other relevant metrics – such as GDP and 
agricultural value added – three indicators have been developed that help 
identify entry points for the prioritization of interventions and investments.

The AEIR indicator is the ratio between external costs from agricultural production 
and land-use change and the gross agricultural value added. The global AEIR is 
0.31, indicating that 0.31 2020 PPP dollar of hidden costs are generated for every 
1 2020 PPP dollar of agricultural value added.

The DPIR indicator divides productivity losses from dietary patterns in GDP 
PPP terms by GDP PPP. Globally, the DPIR is, on average, 0.072, indicating that 
productivity losses from dietary patterns globally are equivalent to 7.2 percent 
of global GDP PPP in 2020.

The SDIR indicator divides both the income shortfall of agrifood workers in 
moderate poverty and the productivity losses from undernourishment by the 
average income of the moderately poor. Globally, this value is 0.31, indicating 
that the net costs of moderate poverty among agrifood workers and malnutrition 
are equivalent to 31 percent of the net global income of the moderately poor.

The largest agricultural producers and food consumers would be expected to have the highest 
total cost production and cost bearing. Additional comparisons of regions and countries can 
be conducted using economic ratios. If the GVA of agrifood systems activities for countries 
were available in PPP terms, the external costs associated with agricultural production 
and land-use change could be divided by the GVA to obtain a basic cost–benefit measure. 
The United States of America publishes headline figures for agriculture, food manufacturing 
and food retail value added.103 In 2021, US food and agricultural sector value added was 
1.2  trillion 2020 PPP dollars, while expected US food-sector external costs produced and 
(based on assumptions in the methodology [Section 2]) borne were 1.6 trillion 2020 PPP 
dollars, giving a ratio of 1.33. For every 1 2020 PPP dollar in value added generated by the 
US food and agricultural sector, it produced 1.33 2020 PPP dollars in expected external costs.

Outside the United States of America, few other countries publish comparable value-
added figures for agrifood systems. As a proxy, we use three measures for agrifood systems 
based on the nature of market failure and cost production source: i) agricultural production 
and land-use to agricultural GVA; ii) productivity losses from dietary patterns to total 
productivity from labour; and iii) agrifood workers in moderate poverty and productivity 
losses from undernourishment among the moderately poor compared with the mean income 
of the moderately poor. The indicators interpret this as gross hidden cost – visible benefit 
ratios of agrifood systems.
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High indicator values imply disproportionate cost-bearing from pollution, land-use 
change, dietary patterns and so on compared with the value of the agrifood goods and 
services enabled by the production of pollution, habitat loss, obesity and so on. A zero, or 
negative, value for each indicator represents that net cost-bearing is eliminated or, for a 
negative value, that there are net benefits in the production of pollution alongside the visible 
economic benefits of the goods and services enabled by the pollution. There are simulations 
within the estimates of the social costs of CO2, for example, where the benefits of climate 
change to agriculture in the future outweigh costs. The social benefits of GHG emissions 
are rarely observed in integrated models, being less than 2 percent of simulations, and 
are accounted for in the uncertainty distribution of the GHG emissions used in the study. 
Ecosystem services from the contraction of agricultural land and habitat return is the clearest 
“hidden” benefit term.

4.1	 Agrifood production and land-use externalities
External costs from on-farm GHG emissions, nitrogen emissions from agriculture, agricultural 
water withdrawal land-use change (inclusive of land-use change GHG emissions) and 
ecosystem service losses are counted in the scope of hidden costs of agricultural production 
and LULUC (Figure 2). The present value of national cost-bearing measured in GDP PPP from 
agricultural production and LULUC externalities divided by the GVA of agriculture, forestry 
and fishing (GVA AFF) is the AEIR (equation 1). The external costs of agricultural production 
and LULUC are estimated by items 1–2, 4–5, 7–8, 10–11, 13–14, 16–17 and 19–33 in Table 
1. GVA AFF is used, as data are available from national accounts for all 154 countries.178 
The use of GVA AFF is potentially conservative; ideally agricultural GVA would be available. 
Where available, agricultural GVA is greater than 85 percent and usually greater than 90 
percent of GVA AFF.195

We form AEIR from three per-hectare land intensity components, which are separately 
informative. “Agrifood production and LULUC external natural capital cost” (ALENC) 
is a measure of the present value of external cost-bearing from agrifood production and 
LULUC cost production per hectare (ha) of agricultural land (FAOSTAT). Items 1–2, 7–8, 
13–14, 19–27, 29, 31 and 33 are used in ALENC, as the cost-bearing is characterized as 
primarily occurring though natural capital changes, such as NO3- in surface water from 
the runoff of nitrogen surpluses from cropland-lowering biodiversity in downstream and 
coastal ecosystems. “Agrifood production and LULUC external other capital cost” (ALEOC) 
measures the present value of external cost-bearing from agrifood production and LULUC 
cost production per ha of agricultural land occurring predominantly though other capital 
changes, mainly human capital changes. Items 4–5, 10–11, 16–17, 28, 30 and 32 are used 
in ALEOC. Examples would be volatilized NH3 from manure on pasture results in ammonium 
compounds and particulate matter that causes economic impacts through human disease 
from air pollution. The “agrifood production and LULUC external costs” (ALEC) land intensity 
indicator is a measure of the external costs per hectare of agrifood production and LULUC:

ALEC = ALENC + ALEOC =
PV external costs from agrifood production and LULUC

Agricultural land area 

ALEC is measured in 2020 PPP dollars per hectare in this study and is the numerator 
of the AEIR indicator. The denominator, agrifood production and LULUC economic benefits 
(ALEB), is the GVA AFF per hectare of agricultural land

ALEB =
GVA AFF

Agricultural land area
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ALEB is measured in 2020 PPP dollars per hectare. The AEIR is defined by the formula

AEIR =  = 
PV external costs from agrifood production and LULUC

GVA AFF 

ALEC

ALEB

The indicator can be formed at a global, regional or national level. Global ratios are 
calculated, for example, by dividing the global external costs by the global agricultural 
land area.

Table A5 lists the ALENC, ALEOC and ALEB land intensity components and the AEIR 
indicator for 154 countries. The external costs are averaged over 2016–2020. Data on 
agricultural land are obtained from FAOSTAT and averaged over 2016–2020. Data on GVA 
AFF are obtained from the World Bank as a percentage of GDP and then multiplied by GDP 
PPP. GVA AFF is averaged over 2016–2020.

4.2	 Dietary pattern productivity costs
Productivity losses from obesity and NCDs associated with dietary intake are hidden costs 
of food consumption (Figure 2). Future costs of the burden of disease from dietary patterns 
in the present are potential market failures of imperfect information or rationalization. The 
present value of national productivity losses in GDP PPP from dietary patterns divided by GDP 
PPP forms the DPIR (equation 2). Productivity losses from obesity and NCDs are estimated 
by item 37 in Table 1. GDP PPP as total productivity from human capital input is used as the 
benefit measure of food consumption.

We form the DPIR indicator from two per capita measures. As agricultural land was a 
production unit for the external costs of agrifood production and LULUC, people are the 
production unit for productivity losses from dietary patterns. “Dietary pattern productivity 
losses per capita” (DPPCAP) indicate the average productivity loss per person in 2020 
PPP dollars associated with obesity and NCDs from dietary intake. DPPCAP is used as the 
numerator. GDP PPP per capita (GDPCAP) is the denominator in the DPIR.

DPIR =  = 
PV productivity losses from obesity and NCDs dietary intake

GDP PPP 

DPPCAP

GDPCAP

The DPIR indicates productivity losses as a proportion of GDP PPP. Population data 
are obtained from the United Nations World Population Prospects117 and averaged over  
2016–2020 for DPPCAP and GDPCAP. GDP PPP is obtained from World Bank data and 
averaged over 2016–2020.

Societal costs of distributional failure
Agrifood systems contribute to poverty by failing to distribute large retail revenues to workers. 
Food manufacturing and agriculture historically involve largely low-skilled labour and are 
among the lowest-paid sectors.196–198 The global concentration of market power in trade and 
distribution, manufacturers and retailers in agrifood systems potentially lowers the ability of 
workers to negotiate larger shares of revenue in agrifood systems value chains.199, 200

The cost of removing agrifood systems worker poverty in this study is estimated using a 
transfer payment to cover the income shortfall of workers from the moderate international 
poverty line (3.65 2017 PPP dollars a day).

The second distributional failure considered is the material distribution of sufficient 
calories.201 Global available calories per capita are around 2 900 kcal/day, about 50 percent 
higher than the minimum per capita calories required to prevent undernourishment.202 
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The  productivity losses from protein–energy malnutrition are experienced as income 
reduction across sectors, not just the households of agrifood systems workers.203

For an indicator of distributional failure, we assume that the loss of productivity from 
undernourishment is experienced by the moderately poor.203–205 Therefore, both the income 
shortfall of agrifood systems workers in moderate poverty and the productivity losses from 
undernourishment are considered impediments to moderate poverty alleviation through 
negative income effects. The sum of the two effects will be the numerator. As a denominator 
of the benefits of agrifood systems to moderate poverty, we take the average income of the 
moderately poor. The contributions to alleviating moderate poverty embodied in average 
income are twofold: employment of agrifood systems workers and nourishment for present 
and future labour inputs (prevention of undernourishment). The ratio of distributional costs 
and income benefits provides the SDIR.

“Social distribution moderate poverty agrifood workers” (SDPOVA) denotes the annual 
total income shortfall from the moderate poverty line of agrifood systems workers. “Social 
distribution prevalence of undernourishment cost” (SDPOUC) denotes the annual total 
productivity losses from undernourishment (assumed for simplicity to be experienced by the 
moderately poor). “Social distribution moderate poor income” (SDINC) denotes the annual 
total income of the moderately poor. Then

SDIR =
SDPOVA + SDPOUC

SDINC

Note that the SDIR is an indicator of the contribution of agrifood systems to moderate 
poverty, that is, the overall distributional failure of revenues and calories. It is not an 
indicator of distributional failure solely for agrifood systems workers. The SDIR can decline 
due to a decrease in SDPOUC and/or an increase in SDINC, while SDPOVA remains constant. 
Decreasing productivity losses from improved nourishment (the distribution of calories) 
in moderately poor households not involved in agrifood sector employment would reduce 
productivity losses and increase the total income of the moderately poor.

The SDIR is calculated for this study by items 35 and 36 in Table 1, averaged over 
2016–2020. The income of the moderately poor is obtained from World Bank data on the 
moderately poor poverty gap and averaged over 2016 to 2020.

A brief description of the three indicators and their components is presented in Table 7.

TABLE 7	 Indicators and intensity components associated with the 
external costs, productivity losses and distributional failures of 
agrifood systems

Name Description

ALENC PV PPP of external costs from agrifood production and LULUC per 
hectare of agricultural land, where costs are experienced predominantly 
as the result of natural capital changes.

ALEOC PV PPP of external costs from agrifood production and LULUC per 
hectare of agricultural land, where costs are experienced predominantly 
as the result of human, social, or produced capital changes.

ALEB GVA PPP of AFF per hectare of agricultural land.

AEIR Ratio of the PV of external costs from agrifood production and LULUC to 
the GVA PPP of AFF.


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TABLE 7 (cont.)	 Indicators and intensity components associated with the 
external costs, productivity losses and distributional failures of 
agrifood systems

Name Description

DPPCAP PV PPP of productivity losses from obesity and NCDs due to dietary 
intake per capita.

GDPCAP GDP PPP per capita.

DPIR Ratio of the PV PPP of productivity losses from obesity and NCDs due to 
dietary intake to GDP PPP.

SDPOVA PPP of the total income shortfall of agrifood systems workers that are 
moderately poor.

SDPOUC PV PPP of productivity losses from protein–energy malnutrition in the 
moderately poor.

SDINC PPP of total income of the moderately poor.

SDIR Ratio of income shortfall and productivity losses of the moderately poor 
due to revenue and caloric distributional failure of agrifood systems to 
the income of the moderately poor.

Source: Author’s own elaboration.

Annex 5 lists the AEIR, SDIR and DPIR for the 154 countries studied. A confidence 
interval is reported using the 5th and 95th percentiles of the samples of external costs and 
productivity losses from dietary patterns averaged over 2016–2020.

4.4	 Results on agrifood systems market failure indicators at the global 
and regional level

The global AEIR in Table 8 is 0.31, indicating that 0.31 2020 PPP dollar of external cost is 
generated for every 1 2020 PPP dollar of agricultural value added. On average, a hectare of 
agricultural land globally produces 360 2020 PPP dollars in external costs and 1 532 2020 PPP 
dollars in GVA. The DPIR is 0.072, indicating that productivity losses from dietary patterns 
globally are equivalent to 7.2 percent of global GDP PPP in 2020. Productivity losses 
amounted to 1 179 2020 PPP dollars per person. The global SDIR is 0.31, indicating net costs 
of moderate poverty among agrifood workers and productivity losses from protein–energy 
malnutrition in the moderately poor are equivalent to 31 percent of the net global income of 
the moderately poor.

The population, AFF GVA in PPP terms and net income of the moderately poor used in the 
global indicators are the aggregates of the 154 studies studied, not total global population or 
global AFF GVA PPP or such. Similarly, regional indicators are calculated from the countries 
in the study in the given region or income group.

Per Table 8, HICs generated approximately 11 percent of global AFF GVA PPP in 2020, 
but produced around 24 percent of external costs from agricultural production and LULUC 
(Figure 13). The AEIR for HICs is 0.76 (0.76 2020 PPP dollar in external costs for every 1 
2020 PPP dollar of AFF GVA PPP) compared with an AEIR of 0.35 for UMCs, 0.17 for LMCs 
and 0.36 for LICs. The risk that developed countries are generating additional economic 
damage is higher: the 95th percentile of the AEIR for HIC is 1.22, compared with 0.87 for 
UMCs, 0.35 for LMCs and 0.74 for LICs. This contrast is apparent at country level, where the 
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AEIR of China (Table 11) is 0.21 compared with an AEIR for the United States of America of 
1.14. China has larger external costs, as seen in prior sections, but its AFF GDP PPP is eight 
times larger than that of the United States of America.178 LMCs generate lower external costs 
for value added in agriculture, according to the AEIR indicator (the AEIR indicator of other 
income groups treated as random variables stochastically dominate the AEIR indicator of 
LMCs). Per Table 11, India has an AEIR of 0.13.

TABLE 8	 Agricultural externalities impact ratio (AEIR) for 2020 at global and 
regional level

Identifier
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
(dimensionless)

Global World 360  
(191, 762)

113  
(61, 199)

1 532
0.31  

(0.18, 0.60)

Income Low-income 
countries

125  
(54, 252)

71  
(28, 151)

549
0.36 

(0.15, 0.74)

Income Low- to middle-
income countries

432  
(205, 946)

117  
(59, 216)

3 263
0.17 

(0.09, 0.35)

Income Upper-middle-
income countries

419  
(146, 1 101)

83  
(45, 147)

1 441
0.35 

(0.14, 0.87)

Income High-income 
countries

327  
(177, 559)

173  
(90, 311)

655
0.76 

(0.47, 1.22)

Regional Sub-Saharan 
Africa

141  
(67, 276)

66  
(28, 134)

741
0.28 

(0.14, 0.55)

Regional Northern Africa 
and Western Asia

138  
(61, 308)

33  
(17, 58)

892
0.19 

(0.10, 0.39)

Regional Latin America 
and the 
Caribbean

475  
(162, 1 210)

125  
(61, 233) 758

0.79 
(0.33, 1.83)

Regional Southern Asia 685 
(293, 1 596)

154  
(77, 287)

6 187
0.14  

(0.06, 0.30)

Regional Eastern and 
Southeastern Asia

584  
(149, 1 989)

135  
(73, 233)

3 257
0.22  

(0.08, 0.65)

Regional Oceania 49  
(–168, 258)

28  
(15, 52)

112
0.69  

(–1.2, 2.5)

Regional Europe 577  
(337, 1 030)

327  
(157, 608)

1 329
0.68  

(0.42, 1.14)

Regional Northern 
America

425  
(165, 887)

104  
(57, 175)

470
1.13  

(0.53, 2.17)

Notes: ALENC – agrifood production and land use and land-use change (LULUC) external natural capital cost; 
ALEOC – agrifood production and LULUC external other capital cost; ALEB – agrifood production and LULUC 
economic benefits. 5th and 95th percentiles shown in brackets. 

Source: Author’s own elaboration.
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There is large uncertainty, but expected values indicate that LMCs and HICs have similar 
external costs from agricultural production and LULUC per hectare, and LMCs may generate 
nearly 4.5 times more AFF GVA PPP per hectare for the same external cost. These figures are 
in purchasing power, not exchange rate terms. Regionally, Latin America and the Caribbean, 
Europe and North America have high AEIR indicators. There is little confidence in indicators 
for Oceania due to the uncertainty in the net value of habitat loss and habitat return from 
land-use change. The Americas have the highest AEIR. Asia and Africa have the lowest 
AEIR. Southern Asia’s AEIR of 0.14 is roughly half that of sub-Saharan Africa, at 0.28, not 
because the agricultural sector is less important in GDP PPP terms to sub-Saharan economies, 
but due to a combination in sub-Saharan Africa of low productivity in the agricultural sector 
and the relatively high production of GHG emissions from farms and land-use change.

Approximately 85 percent of the global population in LICs and middle-income countries 
(MICs) consumed around 84.5 percent of global available calories in 2020 (FAOSTAT Food 
Balance Sheets).206 Per person, productivity losses from dietary patterns are less for LICs, 
LMCs and UMCs (Table 9). In terms of per capita economic burden, though, productivity 
losses from dietary patterns as a proportion of GDP PPP in 2020 are similar in MICs and 
HICs and in the range of 5–10 percent taking into account confidence intervals.

Among the largest consumer and producer countries, the DPPCAP of China is 
1 390 2020 PPP dollars, compared with 3 890 2020 PPP dollars in the United States of 
America (Table 11). China’s per capita economic burden from dietary patterns is larger, 
though; it has a DPIR of 9 percent of GDP PPP compared with a DPIR of 6.4 percent of GDP 
PPP for the United States of America.

Regionally, the DPIR is similar across all regions, reflecting the global syndemic of obesity 
and NCDs from dietary intake.11, 207 The country-level analysis in the next section indicates a 
pocket of higher DPIR values in eastern Europe. Sub-Saharan Africa had the lowest economic 
burden from dietary patterns in 2020. AEIR indicators for Oceania, primarily influenced 
by activity in Australia and New Zealand, are uncertain due to the non-inclusion of small 
island states.

TABLE 9	 Dietary patterns impact ratio (DPIR) for 2020 at global and 
regional level

Identifier
DPPCAP

(2020 PPP dollars/ 
capita)

GDPCAP
(2020 PPP dollars/ 

capita)

DPIR
(dimensionless)

Global World 1 179  
(1 049, 1 317)

16 345 0.072  
(0.064, 0.081)

Income Low-income 
countries

77  
(68, 86)

2 008 0.038  
(0.034, 0.043)

Income Low- to middle-
income countries

484  
(410, 568)

6 921 0.070  
(0.059, 0.082)

Income Upper-middle-
income countries

1 451  
(1 157, 1 805)

16 765 0.087  
(0.069, 0.108)

Income High-income 
countries

3 123  
(2 673, 3 603)

49 201 0.063  
(0.054, 0.073)


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TABLE 9 (cont.)	 Dietary patterns impact ratio (DPIR) for 2020 at global and 
regional level

Identifier
DPPCAP

(2020 PPP dollars/ 
capita)

GDPCAP
(2020 PPP dollars/ 

capita)

DPIR
(dimensionless)

Regional Sub-Saharan 
Africa

212  
(180, 247)

3 859 0.055  
(0.047, 0.064)

Regional Northern Africa 
and Western Asia

1 090  
(961, 1 235)

16 340 0.067  
(0.059, 0.076)

Regional Latin America 
and the 
Caribbe-an

1 160  
(970,1 375)

15 316 0.076  
(0.063, 0.090)

Regional Southern Asia 448  
(330, 585)

6 253 0.072  
(0.053, 0.094)

Regional Eastern and 
Southeastern Asia

1 212  
(890, 1 569)

16 172 0.075  
(0.055, 0.097)

Regional Oceania 2 213  
(1 497, 3 080)

49 124 0.045  
(0.030, 0.063)

Regional Europe 3 108  
(2 779, 3 474)

38 605 0.081  
(0.072, 0.090)

Regional Northern 
America

3 742  
(2 433, 5 285)

59 749 0.063  
(0.041, 0.088)

Notes: DPPCAP – dietary pattern productivity losses per capita; GDPCAP – GDP PPP per capita. 5th and 95th 
percentiles shown in brackets. 

Source: Author’s own elaboration.

The SDIR indicates the concentration of income shortfall from moderate poverty among 
agrifood workers and productivity losses from protein–energy malnutrition in sub-Saharan 
Africa and southern Asia, as well as more broadly in the Global South (Table 10). The SDIR 
indicator is not a measure of absolute costs or costs per capita. The SDIR indicates the net 
costs of moderate poverty among agrifood workers and productivity losses from protein–
energy malnutrition in the moderately poor, compared with the net global income of the 
moderately poor. Roughly, it is a measure of the contribution of distributional failure in 
agrifood systems to moderate poverty by expressing the costs against the income of the 
moderately poor.

The costs of distributional failures in agrifood systems were equivalent to 57 percent of 
the income of the moderately poor in LICs in 2000. The SDIR indicator decreased as GNI 
increased, except for the HIC group. Confidence in the SDIR indicator for HICs is low. The 
effect could be due to the high level of manufacturing employment associated with food 
in HICs and low-paid workers in food retail, but could also be caused by the low level of 
moderate poverty in HICs and the rounding of the poverty gap in World Bank poverty data. 
Microlevel data for HICs would be more informative for the SDIR indicator.

At a regional level, the SDIR indicator largely follows income levels and structure of 
economies. Despite having similar net poverty costs, the SDIR indicator for southern Asia 
is half that of sub-Saharan Africa. In India, the largest econo-my in southern Asia, AFF 
accounted for 18 percent of GDP in 2020. India’s economy is structurally different to most 
countries in sub-Saharan Africa.208
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TABLE 10	 Social distribution impact ratio (SDIR) for 2020 at global and 
regional level

Identifier
SDPOVA

(billion 2020 
PPP dollars)

SDPOUC
(billion 2020 
PPP dollars)

SDINC
(billion 2020 
PPP dollars)

SDIR
(dimensionless)

Global World 510.90 44.13 1763.00 0.31

Income Low-income 
countries

178.90 8.01 325.50 0.57

Income Low- to middle-
income countries

311.50 30.45 1271.00 0.27

Income Upper-middle-
income countries

19.25 5.16 161.10 0.15

Income High-income 
countries

1.28 0.52 5.88 0.31

Regional Sub-Saharan 
Africa

266.40 15.49 530.50 0.53

Regional Northern Africa 
and Western Asia

13.42 2.83 78.32 0.21

Regional Latin America 
and the 
Caribbean

11.93 4.26 61.29 0.26

Regional Southern Asia 190.30 18.95 884.40 0.24

Regional Eastern and 
Southeastern Asia

27.52 2.44 203.10 0.15

Regional Oceania 0.02 0.00 0.06 0.37

Regional Europe 0.81 0.15 4.07 0.24

Regional Northern 
America

0.46 0.00 1.36 0.34

Notes: SDPOVA – income shortfall of agrifood workers to the international moderate poverty line; SDPOUC 
– social distribution prevalence of undernourishment cost; SDINC – total income of individuals below the 
international moderate poverty line. The SDIR describes the net costs of moderate poverty in agrifood workers 
(SDPOVA) and productivity losses from protein–energy malnutrition in the moderately poor (SDPOUC) as a 
proportion of net income of the moderately poor (SDINC). 

Source: Author’s own elaboration.

4.5	 Results on agrifood systems market failure indicators at 
country level

Table 11 shows the AEIR, DPIR and SDIR indicators for countries that are the largest 
agricultural producers and food consumers. The comparison is also shown graphically in 
Figure 21.
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TABLE 11	 Agrifood systems hidden cost indicators for the major producers 
and consumers in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
(dimensionless)

United States 
of America 431 (138, 959)  95 (52, 161)  457 1.15 (0.48, 2.33)

China 565 (80, 2 287)  86 (46, 158) 3 064 0.21 (0.05, 0.77)

European Union 846 (553, 1 294) 710 (327, 1 350) 2 105 0.74 (0.48, 1.15)

India 884 (341, 1 953) 166 (79, 317) 8 162 0.13 (0.06, 0.27)

Brazil 666 (133, 2 000) 155 (69, 302)  629 1.30 (0.36, 3.69)

Russian 
Federation 342 (59, 1 186)  39 (20, 70)  692 0.55 (0.13, 1.78)

Country
DPPCAP

(2020 PPP dollars/ 
capita)

GDPCAP
(2020 PPP dollars/ 

capita)

DPIR
(dimensionless)

United States 
of America 3 890 (2 452, 5 651) 61 038 0.064 (0.040, 0.093)

China 1 390 (899, 1 953) 15 272 0.091 (0.059, 0.128)

European Union 3 341 (2 943, 3 779) 44 050 0.076 (0.067, 0.086)

India  458 (296, 642)  6 370 0.072 (0.047, 0.101)

Brazil 1 231 (788, 1 743) 14 760 0.083 (0.053, 0.118)

Russian 
Federation 2 909 (1 853, 4 106) 27 961 0.104 (0.066, 0.147)

Country
SDPOVA

(billion 2020 
PPP dollars)

SDPOUC
(billion 2020 
PPP dollars)

SDINC
(billion 2020 
PPP dollars)

SDIR
(dimensionless)

United States 
of America  0.46  0  1.20 0.38

China  6.07  0  82.63 0.07

European Union  0.60  0.02  2.65 0.24

India 151.70 13.09 686.30 0.24

Brazil  2.67  0.32  17.26 0.17

Russian 
Federation  0.02  0  0.40 0.03

Notes: ALENC – agrifood production and land use and land-use change (LULUC) external natural capital cost; 
ALEOC – agrifood production and LULUC external other capital cost; ALEB – agrifood production and LULUC 
economic benefits; AEIR – agricultural externalities impact ratio; DPPCAP – dietary pattern productivity losses 
per capita; GDPCAP – GDP PPP per capita; DPIR – dietary patterns impact ratio; SDPOVA – income shortfall 
of agrifood workers to the international moderate poverty line; SDPOUC – social distribution prevalence of 
undernourishment cost; SDINC – total income of individuals below the international moderate poverty line; 
SDIR – social distribution impact ratio. 5th and 95th percentiles shown in brackets.

Source: Author’s own elaboration.
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FIGURE 21	 National indicators of hidden costs of agrifood systems in 2020 
for the largest producers and consumers

A. ANNUAL MEAN EXTERNAL COST RATIO 
 TO VALUE ADDED BENEFITS

B. ANNUAL MEAN EXTERNAL COSTS AND 
 VALUE ADDED BENEFITS COSTS PER HECTARE

C. ANNUAL MEAN DISTRIBUTIONAL COSTS 
 RATIO TO INCOME FOR MODERATELY POOR

D. ANNUAL MEAN PRODUCTIVITY LOSS FROM 
 DIETARY PATTERNS AS PERCENT OF GDP PPP
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Notes: AEIR – agricultural externalities impact ratio; SDIR – social distribution impact ratio; 
DPIR – dietary patterns impact ratio. The top left panel shows the ratio of external costs associated 
with agricultural production and land use and land-use change (LULUC) to national AFF GVA PPP 
(AEIR). The bottom left panel shows the ratio of total income shortfall of agrifood workers below 
the World Bank moderate poverty line (3.65 2017 PPP dollars per day) and productivity losses from 
undernourishment in the general population to the total income of the general population below the 
World Bank moderate poverty line (SDIR). The bottom right panel shows the ratio of productivity 
losses from dietary patterns per capita to GDP per capita in PPP terms (DPIR). The top right panel 
shows the external costs and GVA benefits of agricultural production (ALEB) and LULUC per hectare 
of agricultural land. ALENC describes the external costs that factor through natural capital changes 
and ALEOC through other capital, for example, human capital changes. The top right panel has a 
log10 y-axis that indicates that, except for the European Union, agricultural and LULUC external 
costs that factor through natural capital changes, such as losses of ecosystem services, are over twice 
the cost of external costs through human capital changes, for example, air pollution due to nitrogen 
agrifood emissions.

Source: Author’s own elaboration.
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Brazil has the highest AEIR indicator, but also a large range in the confidence interval. 
Large uncertainties come from the external costs of nitrogen emissions (Nr runoff from 
cropland and NH3 emissions from fertilizers and livestock manure), GHG emissions (mainly 
farm-gate CH4 emissions and CO2 from deforestation) and land-use change (forest habitat loss).

Across all countries, ALENC was frequently more than twice the value of ALEOC, and 
rarely exceeded by ALEOC. The ratio between ALENC and ALEOC observed in Table 8 in global 
and regional averages is a general characteristic of country cost-bearing. External costs per 
hectare from agricultural production and LULUC that factor through natural capital changes 
exceed external cost factoring predominantly through human capital changes. ALENC rarely 
exceeds ALEB, but for several countries in 2020, the external costs through natural capital 
changes per hectare exceeded the value added per hectare. ALEOC can also exceed ALEB, 
with population density a factor in countries where this is the case. Disease burden from air 
pollution (mainly NH3 emissions) is sensitive to population density. In regional estimates, the 
European Union, with its combination of high population density and high levels of NH3 from 
fertilizer use and livestock manure, has the highest ALEOC indicator.

The high burden of dietary patterns in India (DPIR of 0.072) is indicative of the global 
disease burden from dietary patterns.

The largest agricultural producers and food consumers did not have the highest AEIR 
or DPIR indicators for 2020 among the 154 countries studied. The United States of America 
ranks 20th and Brazil ranks 17th for the AEIR indicator (Table 12). On the DPIR indicator, 
the United States of America ranks 12th (Table 13).

TABLE 12	 Highest agricultural externalities impact ratio (AEIR) for 2020 
at country level

Country
ALENC

(2020 PPP  
dollars/ha)

ALEOC
(2020 PPP  
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
(dimensionless)

Botswana 64 (10, 169) 43 (10, 110) 29 3.70 (0.76, 9.43)

South Sudan 88 (29, 222) 57 (25, 127) 40 3.59 (1.40, 8.49)

Ireland 1 416 (417, 3 186) 1 337 (557, 2 710) 872 3.16 (1.44, 5.75)

Estonia 2 153 (524, 4 968) 670 (297, 1 354) 1 043 2.71 (0.97, 5.59)

Latvia 2 457 (458, 5 586) 496 (205, 1 039) 1 121 2.63 (0.77, 5.54)

Central African 
Republic 394 (121, 977) 293 (131, 664) 266 2.58 (0.97, 6.18)

Zambia 160 (43, 389) 89 (37, 194) 100 2.50 (0.87, 5.60)

Lesotho 240 (30, 845) 37 (17, 72) 111 2.50 (0.50, 8.03)

Democratic 
Republic of 
the Congo

624 (63, 1 754) 468 (84, 1 219) 535 2.04 (0.29, 5.52)

United Kingdom 
of Great Britain 
and Northern 
Ireland

1 428 (414,3 179) 739 (290, 1 584) 1 067 2.03 (0.87,3.89)

Denmark 617 (227, 1 307) 2 011 (825, 4 106) 1 481 1.78 (0.86, 3.28)

Belgium 971 (338, 2 060) 3 667 (1 249, 8 023) 2 909 1.59 (0.65, 3.21)


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TABLE 12 (cont.)	 Highest agricultural externalities impact ratio (AEIR) for 2020 
at country level

Country
ALENC

(2020 PPP  
dollars/ha)

ALEOC
(2020 PPP  
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
(dimensionless)

Namibia 58 (18, 132) 15 (6, 29) 49 1.49 (0.56, 3.13)

Venezuela 
(Bolivarian 
Republic of)

359 (75, 936) 110 (47, 223) 350 1.34 (0.39, 3.50)

Lithuania 757 (204, 1 659) 689 (296, 1 409) 1 098 1.32 (0.57, 2.62)

Brazil 666 (133, 2 000) 155 (69, 302) 629 1.30 (0.36, 3.69)

Angola 377 (49, 1 283) 42 (19, 89) 345 1.22 (0.24, 3.89)

Mongolia 34 (11, 88) 14 (6, 28) 40 1.20 (0.47, 2.85)

United States 
of America 431 (138, 959) 95 (52, 161) 457 1.15 (0.48, 2.33)

Slovakia 1 083 (223, 2 806) 913 (322, 2 047) 1 762 1.13 (0.42, 2.28)

Notes: ALENC – agrifood production and land use and land-use change (LULUC) external natural capital cost; 
ALEOC – agrifood production and LULUC external other capital cost; ALEB – agrifood production and LULUC 
economic benefits. 5th and 95th percentiles shown in brackets. Countries are listed in descending order of 
the AEIR indicator.

Source: Author’s own elaboration.

TABLE 13	 Highest dietary patterns impact ratio (DPIR) for 2020 at 
country level

Country
DPPCAP

(2020 PPP  
dollars/capita)

GDPCAP
(2020 PPP  

dollars/capita)

DPIR
(dimensionless)

Moldova 3 188 (2 056, 4 528) 10 569 0.302 (0.195, 0.428)

Lesotho 643 (391, 950) 2 583 0.249 (0.151, 0.368)

Romania 6 739 (4 306, 9 623) 28 735 0.235 (0.150, 0.335)

Latvia 6 692 (4 261, 9 512) 29 802 0.225 (0.143, 0.319)

Georgia 3 147 (1 989, 4 495) 14 107 0.223 (0.141, 0.319)

Hungary 6 944 (4 355, 9 780) 31 184 0.223 (0.140, 0.314)

Serbia 3 540 (2 270, 5 131) 16 554 0.214 (0.137, 0.310)

Bulgaria 4 536 (2 883, 6 742) 22 437 0.202 (0.129, 0.300)

Croatia 5 460 (3 451, 7 688) 27697 0.197 (0.125, 0.278)

North Macedonia 3 052 (1 891, 4 455) 16 137 0.189 (0.117, 0.276)

Slovakia 5 483 (3 499, 7 871) 30 852 0.178 (0.113, 0.255)

Armenia 2 340 (1 489, 3 324) 13 193 0.177 (0.113, 0.252)

Lithuania 6 131 (3 926, 8 696) 34 933 0.176 (0.112, 0.249)


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TABLE 13	 Highest dietary patterns impact ratio (DPIR) for 2020 at 
country level

Country
DPPCAP

(2020 PPP  
dollars/capita)

GDPCAP
(2020 PPP  

dollars/capita)

DPIR
(dimensionless)

Belarus 3 228 (1 998, 4 637) 18 682 0.173 (0.107, 0.248)

Azerbaijan 2 307 (1 479, 3 307) 14 217 0.162 (0.104, 0.233)

Tajikistan 550 (352, 784) 3 489 0.158 (0.101, 0.225)

Haiti 502 (301, 740) 3 187 0.157 (0.094, 0.232)

Jamaica 1 566 (976, 2 261) 10 061 0.156 (0.097, 0.225)

Guyana 2 138 (1 301, 3 106) 13 870 0.154 (0.094, 0.224)

Ukraine 1 777 (1 175, 2 477) 11 797 0.151 (0.100, 0.210)

Notes:  DPPCAP – dietary pattern productivity losses per capita; GDPCAP – GDP PPP per capita. 5th and 95th 
percentiles shown in brackets. Countries are listed in descending order of the DPIR indicator.

Source: Author’s own elaboration.

A range of African and European countries rank highest on the AEIR indicator for 2020 
(Table 12). A spatial concentration for sub-Saharan Africa is observable for the AEIR in 
the top panel of Figure 22. For sub-Saharan African countries, such as the Central African 
Republic, South Sudan and Zambia, the high AEIR indicator comes from the external costs 
of GHG emissions combined with low value added from agricultural production. Agricultural 
sectors in sub-Saharan Africa need to increase their contributions to GDP PPP while 
improving efficiency in terms of GHGs emitted, through technology, improved infrastructure 
and improvements in education and farm and land management.209 The high external cost 
production in the Democratic Republic of the Congo is due to CO2 emissions from loss of 
forest habitat. Countries with a high AEIR and a high percentage of AFF in overall GDP are 
at risk of damping their economic growth and development by bearing the future economic 
burden of the external costs generated now by their agricultural activities.

The European countries of Belgium, Denmark, Ireland and the United Kingdom of Great 
Britain and Northern Ireland rank higher in the AEIR indicator than the United States of 
America. Expected values indicate that more than 1.5 2020 PPP dollars of external costs 
are generated for every 1 2020 PPP dollar of agricultural value added in Belgium, Denmark, 
Ireland and the United Kingdom of Great Britain and Northern Ireland. Examination of 
cost items for the four countries show intensive use of agricultural inputs, particularly NH3 
emissions, for sectors that provide a low percentage of total GDP PPP. The Baltic countries, 
such as Latvia, appear high on the AEIR list due to forestry activities, classified as cropland 
transitions by the HILDA+ dataset, which potentially have high transition rates combined 
with an asymmetry in costs between lost ecosystem services in established habitat and 
returning ecosystem services in regenerating habitat or managed forest.

Eastern European countries rank highest on the DPIR indicator for 2020 (Table 13), 
and the bottom panel of Figure 22 shows the concentration of countries high in the DPIR 
indicator in eastern Europe. Countries with a high DPIR risk damping economic growth 
with diets that are too high in calories, sugar, salt and transfats and not high enough in 
wholegrains, nuts and seeds, fruit and vegetables. Productivity losses per capita for Belarus, 
Bulgaria, Croatia, Czechia, Estonia, Hungary, Latvia, Lithuania, Moldova, Poland, Serbia, 
Slovakia and Ukraine are equivalent to 15–30 percent of GDP PPP and approximately twice 
the European Union and HIC average.
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FIGURE 22	 Spatial distribution of indicators of hidden costs in the global 
agrifood systems in 2020

A.	 AGRICULTURAL EXTERNALITIES IMPACT RATIO (AEIR)

Agricultural externalities
impact ratio (AEIR)

2.481–3.703
1.563–2.480
0.905–1.562
0.464–0.904
0.196–0.463
0.059–0.195
0.008–0.058
0.000–0.007
No data

B.	 SOCIAL DISTRIBUTION IMPACT RATIO (SDIR)

Social distribution
impact ratio (SDIR)

0.794–2.047
0.485–0.793
0.354–0.484
0.270–0.353
0.206–0.269
0.148–0.205
0.054–0.147
0.000–0.053
Not applicable
No data

C.	 DIETARY PATTERNS IMPACT RATIO (DPIR)

Dietary patterns
impact ratio (DPIR)

0.190–0.302
0.133–0.189
0.101–0.132
0.076–0.100
0.055–0.075
0.037–0.054
0.001–0.036
0.000
No data

Notes: Final boundary between the Sudan and South Sudan has not yet been determined. Dotted 
line represents approximately the Line of Control in Jammu and Kashmir agreed upon by India 
and Pakistan. The top map shows countries with the highest ratio of external costs associated with 
agricultural production and LULUC to national AFF GVA PPP (AEIR). The middle map shows the ratio 
of total income shortfall of agrifood workers below the World Bank moderate poverty line (3.65 2017 
PPP dollars per day) and productivity losses from undernourishment in the general population to 
the total income of the general population below the World Bank moderate poverty line (SDIR). The 
bottom map shows the ratio of productivity losses from dietary patterns per capita to GDP per capita 
in PPP terms (DPIR).

Source: United Nations Geospatial. 2020. Map geodata [shapefiles]. New York, USA, United Nations, 
modified by the author.
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A high POU in Jordan, Malaysia, Thailand, Iraq, Chile, and Moldova contributed to a high 
SDIR indicator in 2020 (Table 14). Sub-Saharan African countries with high incidence of 
extreme poverty are the other countries with high SDIR indicators. Figure 22 middle panel 
shows the concentration of countries high in the SDIR indicator in sub-Saharan Africa.

TABLE 14	 Highest agricultural externalities impact ratio (AEIR) for 2020 
at country level

Country
SDPOVA

(billion 2020 
PPP dollars)

SDPOUC
(billion 2020 
PPP dollars)

SDINC
(billion 2020 
PPP dollars)

SDIR
(dimensionless)

Jordan 0.002071 0.1244 0.06176 2.05

Madagascar 17.12 0.5108 12.7 1.39

Malaysia 0.001132 0.0831 0.07537 1.12

Zambia 8.064 0.1717 7.539 1.09

Mali 5.859 0.06014 5.65 1.05

Moldova 0.002277 0.01848 0.02002 1.04

South Sudan 4.825 0.1841 5.038 0.99

Thailand 0.0526 0.6271 0.6861 0.99

Mozambique 14.63 0.4573 16.1 0.94

Malawi 9.069 0.1596 9.991 0.92

Central African 
Republic 1.451 0.1578 2.314 0.69

Niger 9.177 0.2123 14.16 0.66

Zimbabwe 4.218 0.4459 7.089 0.66

Tanzania 
(United 
Republic of)

19.74 1.91 33.33 0.65

Democratic 
Republic of the 
Congo

32.35 1.641 53.41 0.64

Uganda 14.99 0.46 24 0.64

Angola 7.072 0.564 12.16 0.63

Chad 4.828 0.3273 8.599 0.60

Equatorial 
Guinea 0.3305 0.03174 0.6419 0.56

Chile 0.02837 0.09102 0.2179 0.55

Notes: SDPOVA – income shortfall of agrifood workers to the international moderate poverty line; SDPOUC 
– social distribution prevalence of undernourishment cost; SDINC – total income of individuals below the 
international moderate poverty line. Highest 20 countries listed in descending order of the SDIR indicator.

Source: Author’s own elaboration.
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Annex 1.	 Approximation of marginal costs and calculation 
of total costs

BOX A1	 Formula for the calculation of annual costs

Damage costs from the production of the impact quantities over one year ΔCost are 
calculated from marginal damage costs,

∆Cost = Cost (q (t0 ))  – Cost (q (t1)) =        ∇Cost (q(t),s) ⋅ q' (t) dt∫
t1

t0

where 

∆Cost (q,s)  =     ...,           (q,s) , ...   i = 1, ..., 25( )∂Cost

∂qi

are the partial derivates of damage with respect to the impact quantities and q is a 
trajectory q:[t0,t1]R37 of quantity from the beginning of the year t0 to the end of the 
year t1, and s is additional parameters for the calculation of cost in that year besides 
quantity. The parameters s may include future projections of GDP per capita, rates 
of renewal of nature capital, vulnerability of populations to disease, and so on, and 
they may change for the calculation of annual cost in a different year. For simplicity, 
s over the one year is assumed constant. The trajectory q does not specify just the 
quantity produced in the calculation year, q(t0) can specify, as for CO2 emissions, the 
level of emissions in previous years up to t0 and future emissions after t1 to indicate 
stocks of pollutants in the environment or the pre-existing burden of disease.

Impacts from the food system arise from multiple quantity changes and, a priori, 
the gradient of cost ∇Cost(·,s) : R37R37 with the marginal damage cost in NPV at 
some time t0 for impact quantities at the level q(t) at time t is a function of all impact 
quantities. As a concrete example, interactions between the nitrogen cycles, and 
carbon and methane cycles, and their effects on vegetation, terrestrial chemistry 
and atmospheric chemistry, means that the cost from an additional unit of a GHG 
emission depends on the levels of nitrogen emissions. Additional complications for 
calculating the impacts of the food system are that nitrogen emissions at t’>t affect the 
damages of CO2 and N2O emissions at time t. For simplicity, we are not incorporating 
temporal lag into the formulas.

If the marginal damage costs in NPV at some time t0 are approximated by the damage 
from additional production from some reference level of production q*∈ q([t0,t1]) 
(that is, they are approximately constant over the annual portion of the trajectory 
q([t0,t1]) ), then the calculation simplifies to

∆Cost = ∇Cost (q*,s) ⋅ (q (t1 ) – q (t0 )) = (q*,s) × ∆qi∑
23

i=1

∂Cost

∂qi


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BOX A1 (cont.)	 Formula for the calculation of annual costs

where Δqi is the additional production of the impact quantity i over the annual 
period. The validity of the simpler formulas relies on the fact that the number 

(q*)
∂Cost

∂qi

 approximates the partial derivative of the cost function in NPV at some 

time t0 for an additional unit of the quantity qi along the annual trajectory of changes 
q([t0,t1]). Error in the approximation transmits to error in the estimation of total costs.

SPIQ-FS calculates costs based on multiplying an estimate of the average annual marginal 
cost against the annual production of an impact quantity per country. Conceptually, marginal 
costs are functions that depend on the current levels of impact quantities and, to calculate the 
total external costs over the span of a year, the marginal costs should be integrated against 
the change in quantities at the beginning of the year to the end of the year (see Box A1).

Marginal costs in SPIQ-FS version 0 are based on, in most cases, data up to 2020 and, 
for additional units of production of the impact quantity, based on the level of the quantity 
in 2020.

Three kinds of error in using

∇Cost(q*,s)

are:

1.	 	Uncertainly in ∇Cost(q*,s). That is, given the level of quantities q* at some time t ∈ [t0,t1], 
what is the NPV cost to the GDP PPP of present and future economies from an additional 
unit of one of the quantities?

2.	 	Error in ∇Cost(q*,s) as an approximation of ∇Cost(q(t),s), t ∈ [t0,t1].

3.	 	Error in using ∇Cost(q*,s) in year [t0,t1] as an approximation of ∇Cost(p*,s) in a year 
between [t0–4, t1–4] and [t0+4, t1+4].

The one unit of additional quantity in 1. is produced somewhere in the country at time 
t ∈ [t0,t1], therefore, the combination of 1. and 2. relate to intra-annual spatial and temporal 
uncertainty in the national production of impact quantities. Conceptually, taking the mean 
value of the random variable ∇Cost(q*,s) equates to the spatial and temporal average of the 
intra-annual marginal cost of the national production of an additional unit of the impact 
quantity. In practice, the calculation in SPIQ-FS version 0 is more pragmatic and limited. 
Some of the costing models consider national averaging of marginal costs for the production 
of impact quantities, such as nitrogen pollution and blue water withdrawal. Epistemological 
uncertainty in calculating 1. due to long-term economic and emission trajectories,  
for example, for GHG marginal costs or lack of knowledge, such as value of ecosystem 
services or ecosystem productivity losses from nitrogen input loading, is considered in  
cost models.

Here we discuss intra- and short-term inter-annual variation given a calculation of 1.  
as caveats of the use of the approximation in Box A1.

Diffusion along impact pathways
There are two basic averaging processes to consider in attributing a marginal cost to an 
additional quantity produced in one year and in a country. Further considerations and 
limitations are discussed in the Annex A SPIQ-FS version 0 documentation.
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The first averaging process involves the cumulative exposure of natural or human capital 
as an intermediary to the damages to national GDP PPP of a present or future economy 
dependant on natural and human capital flows.81, 210 This process can disperse and average 
impacts to GDP PPP, even though rates of emission and exposure vary spatially and 
temporally over the year. An example is the effects of radiative forcing in the atmosphere 
due to cumulative CO2 emissions.211 Removal processes, in combination with accrued 
emissions from other GHG, aerosols and pollutants, determine the accumulated CO2 in the 
atmosphere and its contribution to radiative forcing.136 Due to global atmospheric mixing, it 
becomes impossible to attribute radiative forcing to spatially distinct emissions, and the rate 
of emissions during the year do not cause sufficient deviation in the accumulated CO2 levels 
to produce large differences in radiative forcing. Another example is the effects of nitrogen 
loading on human populations or ecosystems. Attribution of NCDs to air pollution manifest 
through cumulative or ancillary exposure;212–214 in this case, humans are the intermediary 
capital. Large changes in biodiversity, vegetation, soil chemistry and so on in ecosystems 
from nitrogen loading are also the effect of cumulative exposure,184 even though nitrogen 
loading from agricultural sources, such as cropland, can be seasonal. Effects of temporally 
variable nitrogen loading are temporally dispersed to effects on ecosystem services as flows 
to the human economy by the complex diffusive biological and chemical processes in the 
ecosystem.78, 144 Using a dispersion argument ignores impulse peak-over-threshold exposure 
events where pollutants reach biological toxicity levels.

Unlike the atmosphere as an intermediary, which diffuses the effect of GHG emissions 
globally, ecosystems are exposed to spatially specific nitrogen emissions (such as nitrate 
runoff in a catchment) and the loss of ecosystem services is experienced by, in most 
cases, a spatially limited set of economic actors using those services. Marginal change 
in national emissions is a potentially inaccurate proxy for marginal change of emissions 
within catchments of historical spatial distributions if nitrogen use deviates in the future, 
so improved marginal cost modelling would separate impact quantities like nitrogen into 
finer spatial categories.28 However, the spatial dependence of GDP PPP economic effects 
on additional or reduced nitrogen emissions within national borders is conceptually less 
than the spatial dependence of biological effects, due to the dispersing processes of markets 
and the economy itself. Mechanisms such as insurance distribute income failures from crop 
losses, exacerbated by the loss of ecosystem services from the directly exposed economic 
actors, to a wider set of actors in the economy, again averaging out spatial and temporal 
variance in GDP PPP losses across marginal changes in catchments or subnational regions. 
Transboundary exposure of economic actors to marginal changes in quantities is a constraint 
in SPIQ-FS version 0 modelling.

The second averaging process concerns the dispersion of economic effects to GDP PPP 
from exposed economic actors through exchanges, markets, price transmission, substitution 
in demand and the lack of accounting of distributional effects in GDP PPP itself. As discussed 
in the last paragraph, this process can further disperse and average impacts to GDP PPP 
from spatial and temporal marginal change in emissions and exposure by dispersing the 
effects of changes in natural and human capital flows. This general principle of diffusion 
fails in the presence of market failures that do not efficiently distribute GDP PPP losses and 
in joint market reactions, such as contagion from losses in a small group of economic actors.

Conceptually, it seems likely that natural and human capital act more to diffuse the 
economic effects of exposure over time, while diffusion in the economy, which can occur 
rapidly in some markets, can act more to diffuse spatial effects.



Hidden costs of agrifood systems and recent trends from 2016 to 2023

94

Cumulative exposure and interannual variability
Using an annual approximation for the marginal costs of CO2 emissions in 2020 is 
reasonable, as damages depend on the cumulative stock of CO2 existing in the atmosphere. 
The aggregated emissions of the food system between the first tonne of CO2 produced in 
2015 and the last tonne produced in 2020 are a small portion (approximately 1 percent) of 
the overall stock added since 2000.1, 215 The full stock of anthropogenic post-industrial age 
emissions determines the increase in radiative forcing attributed to additional warming. 
Similar arguments apply for N2O because of its persistence in the atmosphere. IGWG-SCCGHG 
estimates the social costs of GHGs in 10-year intervals to account for changes in stocks in the 
atmosphere of GHGs, pollutants and aerosols.132 Vulnerability of human and natural systems 
to damage from heat stress and other climate may increase over a five-year interval due to 
sustained and increasing exposure to historically high average and maximum temperatures, 
however, this difference contributes marginally to the accumulation of damages over the 
lifetime of the radiative forcing. Uncertainty in estimating the social cost of CO2 and N2O due 
to variation in long-term economic and emission trajectories (that is, 1. in the last section) 
is likely to far exceed intra-annual and interannual variation in the background stock and 
atmospheric conditions influencing radiative forcing in a one-year or eight-year period.183

The cumulative stock of additional CH4 in the atmosphere is a different consideration 
to CO2. CH4 added in one year contributes to radiative forcing for 12 years, on average. 
Agriculture is the largest anthropogenic emitter of CH4,

216 and eight years of agricultural 
emissions from 2015 constitute a significant portion of the added CH4 in the atmosphere 
in 2020. The cumulative stock of CH4 emissions from food systems increased 1.1 percent 
between 2004 and 2016.2 A similar rate of increase over the 2017–2035 period would mean 
that the stock of CH4 was higher for the duration of a 2025 emission than a 2020 emission. 
However, the variability in cumulative CH4 and potential increase in an interannual period 
remains low, at approximately 0.1 percent historically. The average rate of change over 
one year in cumulative CH4 stock, which is the driver of radiative forcing and external 
costs, remains below 1 percent. Over the lifetime of a metric tonne of CH4 emission in 
the atmosphere, its contribution in 20-year global warming potential is 86 times that of 
a metric tonne of CO2.

136 The social cost of CH4 will, therefore, be more sensitive to short-
term variations in the vulnerability of economies to temperature.134 To make a significant 
variation in the social cost, variation in the vulnerability of economies would need to occur 
jointly across major economies. The errors in assuming a constant marginal cost over an 
annual period or short-term inter-annual periods are expected to be larger for CH4 than 
for CO2 and N2O. However, given the low annual change rates in cumulative CH4 stock and 
the lower sensitivity of economic damage to temperature changes in the 2016–2023 period 
assumed in GDP PPP damage estimates, is still likely that the modelled uncertainty in future 
economic conditions and emission trajectories in the IGWG-SCCGHG estimates are larger 
than the intra-annual variability.183, 217

Changes in vulnerability to human disease factors and diets over the 2016–2023 period 
should be factored into the calculation of the impact quantity in DALYs. The calculation of 
DALYs uses a population model, so the DALYs calculated are already aggregated individuals 
at the population level. The population models are stratified into age groups, so it is possible 
in a different study to estimate productivity losses in terms of direct illness or effect on 
labourers in the same household according to the age of mortality. Models of finer resolution 
could indicate sectoral or income-group variability of DALYs as the equivalent consideration 
of spatial variability in emissions of environmental pollutants. In terms of intra-annual 
variability of national food consumption, the DALYs are assumed to occur in the future and 
be attributable to cumulative exposure to dietary intake, potentially over decades for obesity, 
cardiovascular disease and neoplasms.218–220 From DALYs to productivity losses, the main 
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factors are changes in productivity and changes in workforce participation due to illness in 
labourers or dependents. Due to the cumulative exposure to dietary intake and the nature 
of DALYs, which project the years from premature mortality in the future to a standard 
life expectancy, intra-annual and short-term interannual food consumption are largely 
influenced by a shared long-term trajectory of changes in labour productivity, population 
and labourers per capita. Only near-term disease outcomes attributable to dietary intake 
are relevant to intra-annual or near-term interannual variability in labour productivity 
conditions. This breaks down to what was the contribution of dietary intake in the present 
year to mortality in the next year. Assume an average 20 percent contribution per year 
to the cumulative effect leading to mortality (up to five years’ exposure leads to mortality 
on average). For 2019, per the GBD study, the average number of DALYs per mortality 
for dietary risks is 20 years,14 so one year covers 5 percent of the span of the reduced life 
expectancy. With these numbers, 2 percent of the DALYs from food consumption in one year 
do not overlap with the same labour productivity conditions as food consumption in the next 
year. Labour productivity growth from 2011 to 2018, since the global financial crisis, has 
been approximately constant, almost zero for advanced economies and about 3 percent for 
emerging and developing economies.221 ILO statistics show a less than 10 percent variation 
in labour productivity among nations during the pandemic,222 and World Bank statistics 
show a less than 20 percent variation in the number of labourers among nations during 
the pandemic.223 Per labourer contribution to GDP PPP varied by up to 32 percent during 
the pandemic. With these figures, assuming a COVID-19 pandemic shock to productivity in 
the average 2 percent of the future distributions of attributable years of life lost that do not 
overlap for inter-annual food consumption, marginal productivity losses per DALY vary by 
less than 0.7 percent. This study does not consider variation in the attribution of DALYs to 
dietary intake or incorporate that into productivity loss estimates. Using the variation from 
the Monte Carlo simulation of DALYs in the 2019 GBD,14 that variation (uncertainty that 
would be incorporated in 1. in the last section) is substantially larger than the expected 
intra- and near inter-annual variation in productivity loss estimates (2. and 3. in the last 
section) given an estimate of 1.

Spatially and temporally, the value of ecosystem services is highly variable.224, 225 

Documentation for the SPIQ-FS dataset34 demonstrates the high uncertainty for calculating 
national and annual averages from large databases of studies of the values of ecosystem 
services. Changes to national and annual averages of per hectare loss or return of a forest, 
grassland, waterway, wetland or coastal ecosystem would depend on large-scale changes 
in utilization of natural capital by the economy outside of agricultural provisioning or the 
economic goods and services supported by natural capital.210, 226, 227 Lost established habitat 
entails a long-term loss of services, the cumulative amount of which is calculated to attribute 
losses per hectare. Global studies indicate that returned habitat from agriculture slowly 
returned and is available for, on average, 14 years.146 Therefore the value of services on 
returned habitat could vary more between one effective hectare returned within a year 
and one effective hectare returned the next year. One of the main indicators of changes in 
utilization are changes in land-use itself. Land transitions to returned habitat involve less 
than 1 percent of current land used for agriculture and forestry HILDA+,7 indicating that 
changes in utilization occur over a longer time frame. The value of economic goods and 
services supported by natural capital is likely to cause more intra-annual and interannual 
variability than the transition in the produced capital base. Growth in agricultural forestry 
and fishing value added was highly variable between 2016 and 2021 and highly variable 
between countries.228 However, seeing as the damage calculation from lost services extends 
over decades, only a small fraction of which is not shared by intra- or short-term interannual 
habitat loss or return, and the very large uncertainty from lack of knowledge of the historical 
value of national ecosystem services, it is expected that the several orders of magnitude of 
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uncertainty in the calculation of the value of ecosystem services in a given year will outweigh 
intra- and short-term interannual variability. The sudden return of land to nature within a 
year of loss of established habitat is tempered by the gradual regeneration of lost ecosystem 
services and discounting. Sudden reconversion within a year of abandoned agricultural land 
creates very large variation. These conversion processes would have to be intra-temporal, 
though, not to be conceptually incorporated into 1., meaning they would have to have large 
differences in the probability of occurring in the one year as opposed to the next.

Productivity losses from 1 N-kg of spatially and temporally variable volatilized NH3 and 
NOx depend on atmospheric conditions, the distribution of populations and agricultural land, 
and the vulnerability of the exposed populations.229, 230 Agricultural land transitions involve 
less than 1 percent of current land used for agriculture and forestry, and the main increases 
in tropical forest and abandoned agricultural land occur further from dense populations 
sources,231, 232 indicating the likely stability of sources to exposed populations. Modelling of 
marginal costs of NH3 and NOx marginal costs included uncertainty in population exposure, 
which conceptually captures aspects such as variable atmospheric conditions in peak periods 
for fertilizer application on cropland.230 The probability of such atmospheric conditions is 
not assumed to change substantially over a short-term interannual period (it should be 
incorporated in the calculation of 1. in the previous section).233 It is unclear whether rural-to-
urban transitions change exposure directly, most likely through urban expansion displacing 
agricultural land, but large-scale changes in urban and rural populations is not assumed 
over short periods. The consideration from cumulative exposure to DALYs and from DALYs 
to productivity losses is the same as discussed for dietary DALYs. The spatial uncertainty 
calculation is expected to outweigh interannual fluctuation due to changes in exposed 
populations and their vulnerability.36, 234 Marginal costs of deposition of NH3 and NOx, and 
surface-water runoff rely on temporally and spatially variable nitrogen loading in terrestrial 
ecosystems, mainly inland waterways and wetlands, transportation to coastal ecosystems 
and the vulnerability to nitrogen loading of the ecosystem services provided.95, 96, 235 Changes 
in ecosystem services from nitrogen loading on established vegetation are assumed to be 
cumulative over several years.236–238 For transient biomass responsible for eutrophication 
and algal blooms, seasonal events show regular frequency with similar seasonal nitrogen 
loadings.239 Changes in utilization and the value of ecosystem services were discussed above. 
Changes in the concentrations of loading and vulnerability probably have a functional 
relationship with the absolute level of loading, which is relatively stable at annual levels 
over 2016–2021 in terms of fertilizer use and livestock manure (FAOSTAT), compared 
with the order of magnitude of uncertainty in the value of the ecosystem services provided. 
Nitrogen loading can vary substantially from year to year from precipitation at the times of 
cropland application, but the probability of such atmospheric conditions and the probability 
of intra-annual events such as algal bloom is not assumed to change substantially over a 
short-term interannual period (it should be incorporated into the calculation of 1. in the 
previous section).240

In this study, an additional person in moderate poverty is costed by transferring the 
average income shortfall, and all persons in moderate poverty in that country in that year 
are treated as additions. Poverty is not costed by a marginal rate of damages from the 
time that the additional person spends in poverty over future years. It is assumed that an 
individual in poverty receives the payment irrespective of where they are in the country and 
at what time during the year the individual enters moderate poverty.

Blue water costs depend on future water scarcity up to 2100. By the same arguments as 
above, long-term water scarcity and the economic conditions in which it occurs in the future 
are expected to be relatively insensitive to the fluctuations in intra-annual and short-term 
interannual hydrological conditions.
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The costing model for undernutrition incorporates uncertainty in the protein–energy 
malnutrition vulnerability of populations exposed to undernourishment across more than 
150 countries and 15 years of data. The historical period covers conflict, economic shocks 
and natural disasters, which may influence poorer health and increase the likelihood of 
an increased burden of disease from the same POU. Protein–energy malnutrition does 
require the same degree of cumulative exposure as NCDs from dietary patterns, and the 
COVID-19 pandemic created a larger economic and social shock than the financial crises 
and other events in the training period. Therefore, uncertainty in the marginal costs of 
undernourishment may not fully capture interannual variation in the 2016–2023 period. 
The costs of protein–energy malnutrition are lower in this study than other agrifood cost 
items, so the additional variability in the costs of undernourishment are unlikely to change 
the conclusions of the study, except for the ranking of the SDIR indicator where SDPOUC is 
the main component of the indicator.
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Annex 2.	 A snapshot of marginal costs generated by 
the model

The Annex 2 output datafile of a SPIQ-FS calculation contains the marginal cost item for each 
country (in this case, 154). There are 27 unique marginal cost items (Table 1), as poverty 
marginal costs are provided for all eight years, and the Annex 2 file for this study contains 4 
158 individual rows. The full Annex 2 file contains a 4 158x1 000 block of double precision 
data that specifies 1 000 joint samples of the 4 158 marginal cost items treated as random 
variables. To indicate the contents of the Annex 2 output, we show a cross-section of the file 
with 20 cost items in 2020 for two countries (Table A1).

The full Annex 2 file with and without samples can be accessed at Lord (2023).46

TABLE A1	 A snapshot of marginal cost items generated by the SPIQ-FS model 
of 154 countries for the Plurinational State of Bolivia

ISO3 M49 Scen Year Quantity Unit2 Unit Mean mu sigma

BOL 68 1 2020 Blue water 2020 PPP 
dollars

m3 0.033 –3.462 0.431

BOL 68 1 2020 Burden of disease 2020 PPP 
dollars

DALY 16 656.326 9.684 0.275

BOL 68 1 2020 CH4 agriculture 2020 PPP 
dollars

metric 
tonne

813.075 6.170 1.124

BOL 68 1 2020 CH4 mortality 2020 PPP 
dollars

metric 
tonne

678.322 6.256 0.670

BOL 68 1 2020 CO2 agriculture 2020 PPP 
dollars

metric 
tonne

28.199 2.711 1.223

BOL 68 1 2020 CO2 mortality 2020 PPP 
dollars

metric 
tonne

23.157 2.798 0.792

BOL 68 1 2020 Forest habitat loss 2020 PPP 
dollars

ha 32 676.134 9.191 1.895

BOL 68 1 2020 Forest habitat 
return

2020 PPP 
dollars

ha 4 453.063 7.196 1.895

BOL 68 1 2020 Mean income 
shortfall (2020 PPP)

2020 PPP 
dollars

ppl 552.013 6.314 0.000

BOL 68 1 2020 N2O agriculture 2020 PPP 
dollars

metric 
tonne

10 486.316 8.748 1.095

BOL 68 1 2020 N2O mortality 2020 PPP 
dollars

metric 
tonne

8 792.841 8.833 0.650

BOL 68 1 2020 NH3 emissions to 
air: air pollution

2020 PPP 
dollars

N-kg 1.271 –0.054 0.755

BOL 68 1 2020 NH3 emissions to 
air: deposition

2020 PPP 
dollars

N-kg 4.435 0.942 1.078

BOL 68 1 2020 NO3- leaching to 
groundwater

2020 PPP 
dollars

N-kg 0.458 –1.099 1.014

BOL 68 1 2020 NO3- runoff to 
surface water

2020 PPP 
dollars

N-kg 5.371 0.237 1.796

BOL 68 1 2020 NOx emissions to 
air: air pollution

2020 PPP 
dollars

N-kg 1.474 0.288 0.445
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TABLE A1 (cont.)	A snapshot of marginal cost items generated by the SPIQ-FS model 
of 154 countries for the Plurinational State of Bolivia

ISO3 M49 Scen Year Quantity Unit2 Unit Mean mu sigma

BOL 68 1 2020 NOx emissions to 
air: deposition

2020 PPP 
dollars

N-kg 8.911 2.054 0.484

BOL 68 1 2020 Other habitat loss 2020 PPP 
dollars

ha 16 153.210 8.644 1.500

BOL 68 1 2020 Other habitat 
return

2020 PPP 
dollars

ha 2 177.240 6.650 1.500

BOL 68 1 2020 Undernourishment 2020 PPP 
dollars

ppl 46.911 3.780 0.376

Notes: DALY – disability-adjusted life years. ISO3 indicates the country ISO 3166-1 alpha-3 code, and M49 
indicates the United Nations numerical classification system of sovereign countries and territories.241 
The parameters mu and sigma describe a log-normally distributed marginal fitted to cost model samples.

Source: Author’s own elaboration.
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Annex 3.	 A snapshot of total costs generated by the model
The Annex 3 output datafile of a SPIQ-FS calculation contains the quantities associated with 
unique cost items paired with unique marginal cost items (in this case, 37, see Table 1) for 
each country (in this case 154), for each year (in this case 2016–2023). The Annex 3 file for 
this study contains 45 584 individual rows. The marginal cost items and their joint sample in 
Annex 2 are matched to each quantity cost item, units are checked and, for most items, each 
quantity cost item is multiplied by the 1 000 marginal cost item samples to obtain 1 000 total 
cost item samples. This method assumes validity in a first order approximation of change in 
total damages (Annex 1). The Annex 3 file contains a 45 584x1 000 block of double precision 
data that specifies 1 000 joint samples of the 45 584 marginal cost items treated as random 
variables. To indicate the contents of the Annex 3 output, we show all 37 cost items for the 
same country in a single year (Table A2).

The full Annex 3 file with and without samples can be accessed at Lord (2023).46

TABLE A2	 A snapshot of cost items calculated by the SPIQ-FS model for up to 
37 cost items for one country in one year (Afghanistan)
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AFG 4 2016 S Poverty Agrifood 
worker poverty

Poverty 
head-count 

at 3.65 2017 
PPP dollars 

a day 

ppl 1.03E+07 Mean income 
shortfall 

(2020 PPP)

ppl 425.47 2020 
PPP 

dollars

4.39E+09

AFG 4 2016 E Water Blue water 
withdrawal

Agriculture m3 2.00E+10 Blue water m3 0.02 2020 
PPP 

dollars

3.86E+08

AFG 4 2016 H Dietary 
patterns

Burden 
of disease 
(dietary 
patterns)

NCDs and 
high BMI 
from food 

consumption

DALY 1.13E+06 Burden of 
disease

DALY 4 714.72 2020 
PPP 

dollars

5.32E+09

AFG 4 2016 S Under-
nourishment

Burden 
of disease 
(under-

nourishment)

Protein–
energy 

malnutrition

ppl 7.86E+06 Under-
nourishment

ppl 47.03 2020 
PPP 

dollars

3.69E+08

AFG 4 2016 E Climate Emissions 
(CH4)

Farm gate metric 
tonnes

4.25E+05 CH4 
agriculture

metric 
tonne

813.08 2020 
PPP 

dollars

3.45E+08

AFG 4 2016 E Climate Emissions 
(CH4)

Farm gate metric 
tonnes

4.25E+05 CH4 
mortality

metric 
tonne

678.32 2020 
PPP 

dollars

2.88E+08

AFG 4 2016 E Climate Emissions 
(CH4)

Land-use 
change

metric 
tonnes

0.00E+00 CH4 
agriculture

metric 
tonne

813.08 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(CH4)

Land-use 
change

metric 
tonnes

0.00E+00 CH4 
mortality

metric 
tonne

678.32 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(CH4)

Pre- and 
post- 

production

metric 
tonnes

1.09E+05 CH4 
agriculture

metric 
tonne

813.08 2020 
PPP 

dollars

8.83E+07

AFG 4 2016 E Climate Emissions 
(CH4)

Pre- and 
post- 

production

metric 
tonnes

1.09E+05 CH4 
mortality

metric 
tonne

678.32 2020 
PPP 

dollars

7.36E+07
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TABLE A2 (cont.)	A snapshot of cost items calculated by the SPIQ-FS model for up to 
37 cost items for one country in one year (Afghanistan)
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AFG 4 2016 E Climate Emissions 
(CO2)

Farm gate metric 
tonnes

1.82E+05 CO2 
agriculture

metric 
tonne

28.20 2020 
PPP 

dollars

5.12E+06

AFG 4 2016 E Climate Emissions 
(CO2)

Farm gate metric 
tonnes

1.82E+05 CO2 mortality metric 
tonne

23.16 2020 
PPP 

dollars

4.21E+06

AFG 4 2016 E Climate Emissions 
(CO2)

Land-use 
change

metric 
tonnes

0.00E+00 CO2 
agriculture

metric 
tonne

28.20 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(CO2)

Land-use 
change

metric 
tonnes

0.00E+00 CO2 mortality metric 
tonne

23.16 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(CO2)

Pre- and 
post- 

production

metric 
tonnes

7.63E+05 CO2 
agriculture

metric 
tonne

28.20 2020 
PPP 

dollars

2.15E+07

AFG 4 2016 E Climate Emissions 
(CO2)

Pre- and 
post- 

production

metric 
tonnes

7.63E+05 CO2 mortality metric 
tonne

23.16 2020 
PPP 

dollars

1.77E+07

AFG 4 2016 E Climate Emissions 
(N2O)

Farm gate metric 
tonnes

1.58E+04 N2O 
agriculture

metric 
tonne

10 486.32 2020 
PPP 

dollars

1.65E+08

AFG 4 2016 E Climate Emissions 
(N2O)

Farm gate metric 
tonnes

1.58E+04 N2O 
mortality

metric 
tonne

8 792.84 2020 
PPP 

dollars

1.39E+08

AFG 4 2016 E Climate Emissions 
(N2O)

Land-use 
change

metric 
tonnes

0.00E+00 N2O 
agriculture

metric 
tonne

10 486.32 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(N2O)

Land-use 
change

metric 
tonnes

0.00E+00 N2O 
mortality

metric 
tonne

8 792.84 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(N2O)

Pre- and 
post- 

production

metric 
tonnes

6.76E+02 N2O 
agriculture

metric 
tonne

10 486.32 2020 
PPP 

dollars

7.08E+06

AFG 4 2016 E Climate Emissions 
(N2O)

Pre- and 
post- 

production

metric 
tonnes

6.76E+02 N2O 
mortality

metric 
tonne

8 792.84 2020 
PPP 

dollars

5.94E+06

AFG 4 2016 E Land Land-use 
change

Cropland to 
forest

ha 0.00E+00 Forest 
habitat 
return

ha –8 118.95 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Land Land-use 
change

Cropland to 
unmanaged 
grassland

ha 0.00E+00 Other habitat 
return

ha –2 114.69 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Land Land-use 
change

Forest to 
cropland

ha 1.05E+02 Forest 
habitat loss

ha 51 437.21 2020 
PPP 

dollars

5.41E+06

AFG 4 2016 E Land Land-use 
change

Forest to 
pasture

ha 1.00E+02 Forest 
habitat loss

ha 51 437.21 2020 
PPP 

dollars

5.16E+06

AFG 4 2016 E Land Land-use 
change

Pasture to 
forest

ha 4.05E+02 Forest 
habitat 
return

ha –8 118.95 2020 
PPP 

dollars

–3.29E+06
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TABLE A2 (cont.)	A snapshot of cost items calculated by the SPIQ-FS model for up to 
37 cost items for one country in one year (Afghanistan)
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AFG 4 2016 E Land Land-use 
change

Pasture to 
unmanaged 
grassland

ha 0.00E+00 Other habitat 
return

ha –2 114.69 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Land Land-use 
change

Unmanaged 
grassland to 

cropland

ha 0.00E+00 Other habitat 
loss

ha 13 864.74 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Land Land-use 
change

Unmanaged 
grassland to 

pasture

ha 0.00E+00 Other habitat 
loss

ha 13 864.74 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NH3 
emissions 

to air

N-kg 7.54E+07 NH3 emis-
sions to air: 
air pollution

N-kg 1.00 2020 
PPP 

dollars

7.56E+07

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NH3 
emissions 

to air

N-kg 7.54E+07 NH3 emis-
sions to air: 
deposition

N-kg 3.42 2020 
PPP 

dollars

2.58E+08

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NO3- human 
sewerage 
in surface 

water

N-kg 1.00E+07 NO3- runoff 
to surface 

water

N-kg 1.24 2020 
PPP 

dollars

1.25E+07

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NO3- 
leaching to 

groundwater

N-kg 3.95E+07 NO3- 
leach-ing to 
groundwater

N-kg 0.14 2020 
PPP 

dollars 

5.70E+06

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NO3- runoff 
to surface 

water

N-kg 7.32E+07 NO3- runoff 
to surface 

water

N-kg 1.24 2020 
PPP 

dollars

9.11E+07

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NOx 
emissions 

to air

N-kg 1.05E+07 NOx emis-
sions to air: 
air pollution

N-kg 1.28 2020 
PPP 

dollars

1.34E+07

AFG 4 2016 E Nitrogen Nitrogen 
emissions

NOx 
emissions 

to air

N-kg 1.05E+07 NOx emis-
sions to air: 
deposition

N-kg 7.31 2020 
PPP 

dollars

7.65E+07

AFG 4 2016 S Poverty Agrifood 
worker poverty

Poverty 
head-count 
at $3.65 a 
day (2017 

PPP)

ppl 1.03E+07 Mean 
in-come 
short-fall 

(2020 PPP)

ppl 425.47 2020 
PPP 

dollars

4.39E+09

AFG 4 2016 E Water Blue water 
withdrawal

Agriculture m3 2.00E+10 Blue water m3 0.02 2020 
PPP 

dollars

3.86E+08

AFG 4 2016 H Dietary 
patterns

Burden 
of disease 
(die-tary 
patterns)

NCDs and 
high BMI 
from food 

consumption

DALYs 1.13E+06 Burden of 
disease

DALY 4 714.72 2020 
PPP 

dollars

5.32E+09

AFG 4 2016 S Under-
nourish-

ment

Burden 
of disease 
(under-

nourishment)

Protein–
energy 

malnutrition

ppl 7.86E+06 Under-
nourishment

ppl 47.03 2020 
PPP 

dollars

3.69E+08

AFG 4 2016 E Climate Emissions 
(CH4)

Farm gate metric 
tonnes

4.25E+05 CH4 
agriculture

metric 
tonne

813.08 2020 
PPP 

dollars

3.45E+08

AFG 4 2016 E Climate Emissions 
(CH4)

Farm gate metric 
tonnes

4.25E+05 CH4 
mortality

metric 
tonne

678.32 2020 
PPP 

dollars

2.88E+08
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TABLE A2 (cont.)	A snapshot of cost items calculated by the SPIQ-FS model for up to 
37 cost items for one country in one year (Afghanistan)
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AFG 4 2016 E Climate Emissions 
(CH4)

Land-use 
change

metric 
tonnes

0.00E+00 CH4 
agriculture

metric 
tonne

813.08 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(CH4)

Land-use 
change

metric 
tonnes

0.00E+00 CH4 
mortality

metric 
tonne

678.32 2020 
PPP 

dollars

0.00E+00

AFG 4 2016 E Climate Emissions 
(CH4)

Pre- and 
post- 

production

metric 
tonnes

1.09E+05 CH4 
agriculture

metric 
tonne

813.08 2020 
PPP 

dollars

8.83E+07

AFG 4 2016 E Climate Emissions 
(CH4)

Pre- and 
post- 

production

metric 
tonnes

1.09E+05 CH4 
mortality

metric 
tonne

678.32 2020 
PPP 

dollars

7.36E+07

AFG 4 2016 E Climate Emissions 
(CO2)

Farm gate metric 
tonnes

1.82E+05 CO2 
agriculture

metric 
tonne

28.20 2020 
PPP 

dollars

5.12E+06

AFG 4 2016 E Climate Emissions 
(CO2)

Farm gate metric 
tonnes

1.82E+05 CO2 mortality metric 
tonne

23.16 2020 
PPP 

dollars

4.21E+06

AFG 4 2016 E Climate Emissions 
(CO2)

Land-use 
change

metric 
tonnes

0.00E+00 CO2 
agriculture

metric 
tonne

28.20 2020 
PPP 

dollars

0.00E+00

Notes: DALY – disability-adjusted life years; NCDs – non-communicable diseases. ISO3 indicates the country 
ISO 3166-1 alpha-3 code, and M49 indicates the United Nations numerical classification system of sovereign 
countries and territories.241

Source: Author’s own elaboration.
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Annex 4.	 Countries included in the analysis

TABLE A3	 154 countries included in the analysis by region, development and 
income group

Country ISO3 M49 Region HDI HDI tier Income group

Afghanistan AFG 4 Southern Asia 0.511 Low LIC

Albania ALB 8 Europe 0.795 High UMC

Algeria DZA 12 Northern Africa and 
Western Asia

0.748 High LMC

Angola AGO 24 Sub-Saharan Africa 0.581 Medium LMC

Azerbaijan AZE 31 Northern Africa and 
Western Asia

0.756 High UMC

Argentina ARG 32 Latin America and 
the Caribbean

0.845 Very high UMC

Australia AUS 36 Oceania 0.944 Very high HIC

Austria AUT 40 Europe 0.922 Very high HIC

Bangladesh BGD 50 Southern Asia 0.632 Medium LMC

Armenia ARM 51 Northern Africa and 
Western Asia

0.776 High UMC

Belgium BEL 56 Europe 0.931 Very high HIC

Bolivia (Plurinational 
State of)

BOL 68 Latin America and 
the Caribbean

0.718 High LMC

Botswana BWA 72 Sub-Saharan Africa 0.735 High UMC

Brazil BRA 76 Latin America and 
the Caribbean

0.765 High UMC

Bulgaria BGR 100 Europe 0.816 Very high UMC

Myanmar MMR 104 Eastern and 
Southeastern Asia

0.583 Medium LMC

Belarus BLR 112 Europe 0.823 Very high UMC

Cambodia KHM 116 Eastern and 
Southeastern Asia

0.594 Medium LMC

Cameroon CMR 120 Sub-Saharan Africa 0.563 Medium LMC

Canada CAN 124 Northern America 0.929 Very high HIC

Cabo Verde CPV 132 Sub-Saharan Africa 0.665 Medium LMC

Central African 
Republic

CAF 140 Sub-Saharan Africa 0.397 Low LIC

Sri Lanka LKA 144 Southern Asia 0.782 High LMC

Chad TCD 148 Sub-Saharan Africa 0.398 Low LIC

Chile CHL 152 Latin America and 
the Caribbean

0.851 Very high HIC

China CHN 156 Eastern and 
Southeastern Asia

0.761 High UMC

Colombia COL 170 Latin America and 
the Caribbean

0.767 High UMC

Congo COG 178 Sub-Saharan Africa 0.574 Medium LMC
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TABLE A3 (cont.)	154 countries included in the analysis by region, development and 
income group

Country ISO3 M49 Region HDI HDI tier Income group

Democratic Republic 
of the Congo

COD 180 Sub-Saharan Africa 0.48 Low LIC

Costa Rica CRI 188 Latin America and 
the Caribbean

0.81 Very high UMC

Croatia HRV 191 Europe 0.851 Very high HIC

Cuba CUB 192 Latin America and 
the Caribbean

0.783 High UMC

Cyprus CYP 196 Northern Africa and 
Western Asia

0.887 Very high HIC

Czechia CZE 203 Europe 0.9 Very high HIC

Benin BEN 204 Sub-Saharan Africa 0.545 Low LMC

Denmark DNK 208 Europe 0.94 Very high HIC

Dominican Republic DOM 214 Latin America and 
the Caribbean

0.756 High UMC

Ecuador ECU 218 Latin America and 
the Caribbean

0.759 High UMC

El Salvador SLV 222 Latin America and 
the Caribbean

0.673 Medium LMC

Equatorial Guinea GNQ 226 Sub-Saharan Africa 0.592 Medium UMC

Ethiopia ETH 231 Sub-Saharan Africa 0.485 Low LIC

Eritrea ERI 232 Sub-Saharan Africa 0.459 Low LIC

Estonia EST 233 Europe 0.892 Very high HIC

Finland FIN 246 Europe 0.938 Very high HIC

France FRA 250 Europe 0.901 Very high HIC

Djibouti DJI 262 Sub-Saharan Africa 0.524 Low LMC

Gabon GAB 266 Sub-Saharan Africa 0.703 High UMC

Georgia GEO 268 Northern Africa and 
Western Asia

0.812 Very high UMC

Gambia (the) GMB 270 Sub-Saharan Africa 0.496 Low LIC

West Bank and Gaza PSE 275 Northern Africa and 
Western Asia

0.708 High LMC

Germany DEU 276 Europe 0.947 Very high HIC

Ghana GHA 288 Sub-Saharan Africa 0.611 Medium LMC

Greece GRC 300 Europe 0.888 Very high HIC

Guatemala GTM 320 Latin America and 
the Caribbean

0.663 Medium UMC

Guinea GIN 324 Sub-Saharan Africa 0.477 Low LIC

Guyana GUY 328 Latin America and 
the Caribbean

0.682 Medium UMC

Haiti HTI 332 Latin America and 
the Caribbean

0.51 Low LMC
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TABLE A3 (cont.)	154 countries included in the analysis by region, development and 
income group

Country ISO3 M49 Region HDI HDI tier Income group

Honduras HND 340 Latin America and 
the Caribbean

0.634 Medium LMC

Hungary HUN 348 Europe 0.854 Very high HIC

Iceland ISL 352 Europe 0.949 Very high HIC

India IND 356 Southern Asia 0.645 Medium LMC

Indonesia IDN 360 Eastern and 
Southeastern Asia

0.718 High LMC

Iran (Islamic 
Republic of)

IRN 364 Southern Asia 0.783 High LMC

Iraq IRQ 368 Northern Africa and 
Western Asia

0.674 Medium UMC

Ireland IRL 372 Europe 0.955 Very high HIC

Israel ISR 376 Northern Africa and 
Western Asia

0.919 Very high HIC

Italy ITA 380 Europe 0.892 Very high HIC

Côte d'Ivoire CIV 384 Sub-Saharan Africa 0.538 Low LMC

Jamaica JAM 388 Latin America and 
the Caribbean

0.734 High UMC

Japan JPN 392 Eastern and 
Southeastern Asia

0.919 Very high HIC

Kazakhstan KAZ 398 Northern Africa and 
Western Asia

0.825 Very high UMC

Jordan JOR 400 Northern Africa and 
Western Asia

0.729 High UMC

Kenya KEN 404 Sub-Saharan Africa 0.601 Medium LMC

Republic of Korea KOR 410 Eastern and 
Southeastern Asia

0.916 Very high HIC

Kuwait KWT 414 Northern Africa and 
Western Asia

0.806 Very high HIC

Kyrgyz Republic KGZ 417 Northern Africa and 
Western Asia

0.697 Medium LMC

Lao People’s 
Democratic Re-public

LAO 418 Eastern and 
Southeastern Asia

0.613 Medium LMC

Lebanon LBN 422 Northern Africa and 
Western Asia

0.744 High LMC

Lesotho LSO 426 Sub-Saharan Africa 0.527 Low LMC

Latvia LVA 428 Europe 0.866 Very high HIC

Liberia LBR 430 Sub-Saharan Africa 0.48 Low LIC

Libya LBY 434 Northern Africa and 
Western Asia

0.724 High UMC

Lithuania LTU 440 Europe 0.882 Very high HIC

Madagascar MDG 450 Sub-Saharan Africa 0.528 Low LIC

Malawi MWI 454 Sub-Saharan Africa 0.483 Low LIC
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TABLE A3 (cont.)	154 countries included in the analysis by region, development and 
income group

Country ISO3 M49 Region HDI HDI tier Income group

Malaysia MYS 458 Eastern and 
Southeastern Asia

0.81 Very high UMC

Mali MLI 466 Sub-Saharan Africa 0.434 Low LIC

Mauritania MRT 478 Sub-Saharan Africa 0.546 Low LMC

Mexico MEX 484 Latin America and 
the Caribbean

0.779 High UMC

Mongolia MNG 496 Eastern and 
Southeastern Asia

0.737 High LMC

Moldova MDA 498 Europe 0.75 High UMC

Montenegro MNE 499 Europe 0.829 Very high UMC

Morocco MAR 504 Northern Africa and 
Western Asia

0.686 Medium LMC

Mozambique MOZ 508 Sub-Saharan Africa 0.456 Low LIC

Oman OMN 512 Northern Africa and 
Western Asia

0.813 Very high HIC

Namibia NAM 516 Sub-Saharan Africa 0.646 Medium UMC

Nepal NPL 524 Southern Asia 0.602 Medium LMC

Netherlands  
(Kingdom of the)

NLD 528 Europe 0.944 Very high HIC

New Zealand NZL 554 Oceania 0.931 Very high HIC

Nicaragua NIC 558 Latin America and 
the Caribbean

0.66 Medium LMC

Niger NER 562 Sub-Saharan Africa 0.394 Low LIC

Nigeria NGA 566 Sub-Saharan Africa 0.539 Low LMC

Norway NOR 578 Europe 0.957 Very high HIC

Pakistan PAK 586 Southern Asia 0.557 Medium LMC

Panama PAN 591 Latin America and 
the Caribbean

0.815 Very high HIC

Paraguay PRY 600 Latin America and 
the Caribbean

0.728 High UMC

Peru PER 604 Latin America and 
the Caribbean

0.777 High UMC

Philippines PHL 608 Eastern and 
Southeastern Asia

0.718 High LMC

Poland POL 616 Europe 0.88 Very high HIC

Portugal PRT 620 Europe 0.864 Very high HIC

Guinea-Bissau GNB 624 Sub-Saharan Africa 0.48 Low LIC

Timor-Leste TLS 626 Eastern and 
Southeastern Asia

0.606 Medium LMC

Qatar QAT 634 Northern Africa and 
Western Asia

0.848 Very high HIC

Romania ROU 642 Europe 0.828 Very high HIC
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TABLE A3 (cont.)	154 countries included in the analysis by region, development and 
income group

Country ISO3 M49 Region HDI HDI tier Income group

Russian Federation RUS 643 Europe 0.824 Very high UMC

Rwanda RWA 646 Sub-Saharan Africa 0.543 Low LIC

Saudi Arabia SAU 682 Northern Africa and 
Western Asia

0.854 Very high HIC

Senegal SEN 686 Sub-Saharan Africa 0.512 Low LMC

Serbia SRB 688 Europe 0.806 Very high UMC

Sierra Leone SLE 694 Sub-Saharan Africa 0.452 Low LIC

Slovakia SVK 703 Europe 0.86 Very high HIC

Viet Nam VNM 704 Eastern and 
Southeastern Asia

0.704 High LMC

Slovenia SVN 705 Europe 0.917 Very high HIC

Somalia SOM 706 Sub-Saharan Africa 0.285 Low LIC

South Africa ZAF 710 Sub-Saharan Africa 0.709 High UMC

Zimbabwe ZWE 716 Sub-Saharan Africa 0.571 Medium LMC

Spain ESP 724 Europe 0.904 Very high HIC

South Sudan SSD 728 Sub-Saharan Africa 0.433 Low LIC

Sudan SDN 729 Northern Africa and 
Western Asia

0.51 Low LIC

Suriname SUR 740 Latin America and 
the Caribbean

0.738 High UMC

Eswatini SWZ 748 Sub-Saharan Africa 0.611 Medium LMC

Sweden SWE 752 Europe 0.945 Very high HIC

Switzerland CHE 756 Europe 0.955 Very high HIC

Syrian Arab Republic SYR 760 Northern Africa and 
Western Asia

0.567 Medium LIC

Tajikistan TJK 762 Northern Africa and 
Western Asia

0.668 Medium LMC

Thailand THA 764 Eastern and 
Southeastern Asia

0.777 High UMC

Togo TGO 768 Sub-Saharan Africa 0.515 Low LIC

United Arab Emirates ARE 784 Northern Africa and 
Western Asia

0.89 Very high HIC

Tunisia TUN 788 Northern Africa and 
Western Asia

0.74 High LMC

Turkey TUR 792 Northern Africa and 
Western Asia

0.82 Very high UMC

Turkmenistan TKM 795 Northern Africa and 
Western Asia

0.715 High UMC

Uganda UGA 800 Sub-Saharan Africa 0.544 Low LIC

Ukraine UKR 804 Europe 0.779 High LMC

North Macedonia MKD 807 Europe 0.774 High UMC
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TABLE A3 (cont.)	154 countries included in the analysis by region, development and 
income group

Country ISO3 M49 Region HDI HDI tier Income group

Egypt EGY 818 Northern Africa and 
Western Asia

0.707 High LMC

United KingdomUnited 
King-dom of Great 
Britain and Northern 
Ireland

GBR 826 Europe 0.932 Very high HIC

Tanzania 
(United Republic of)

TZA 834 Sub-Saharan Africa 0.529 Low LMC

United States of 
America

USA 840 Northern America 0.926 Very high HIC

Burkina Faso BFA 854 Sub-Saharan Africa 0.452 Low LIC

Uruguay URY 858 Latin America and 
the Caribbean

0.817 Very high HIC

Uzbekistan UZB 860 Northern Africa and 
Western Asia

0.72 High LMC

Venezuela (Bolivarian 
Republic of)

VEN 862 Latin America and 
the Caribbean

0.711 High LMC

Yemen YEM 887 Northern Africa and 
Western Asia

0.47 Low LIC

Zambia ZMB 894 Sub-Saharan Africa 0.584 Medium LIC

Notes: SOFA – The State of Food and Agriculture (FAO report); LIC – low-income countries; LMIC – low- to 
middle-income countries; UMIC – upper-middle-income countries; HIC – high-income countries. ISO3 indicates 
the country ISO 3166-1 alpha-3 code, and M49 indicates the United Nations numerical classification system 
of sovereign countries and territories.241 Income group refers to the World Bank income group classification 
by GNI using the Atlas method in 2020.

Source: Author’s own elaboration. 
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Annex 5.	 Indicator results
The AEIR, DPIR and SDIR in 2020 for all 154 countries in the study (Annex 4) are calculated 
from samples of hidden costs using expected values. Where available, intervals report the 
5th and 95th percentiles.

TABLE A4	 Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Afghanistan 34
(17, 65)

13
(6,28)

513 0.09
(0.05, 0.18)

157
(96, 224)

2 096 0.075
(0.046, 0.107)

0.23

Albania 767
(137, 2 155)

510
(181, 1 161)

6 090 0.21
(0.07, 0.45)

1 724
(1 044, 2 527)

13 091 0.132
(0.080, 0.193)

0.27

Algeria 69
(22, 208)

11
(5, 24)

1 491 0.05
(0.02, 0.15)

565
(363, 827)

11 804 0.048
(0.031, 0.070)

0.04

Angola 377
(49, 1 283)

42
(19, 89)

345 1.22
(0.24, 3.89)

189
(113, 280)

6 871 0.027
(0.016, 0.041)

0.63

Argentina 129
(47, 283)

70
(35, 127)

493 0.40
(0.18, 0.80)

1 184
(766, 1 703)

22 247 0.053
(0.034, 0.077)

0.15

Armenia 383
(247, 6 38)

219
(83, 492)

3 044 0.20
(0.12, 0.32)

2 340
(1 489, 3 324)

13 193 0.177
(0.113, 0.252)

0.14

Australia 34
(–183, 236)

17
(9, 33)

82 0.63
(-2.02, 
3.17)

2 193
(1 395, 3 196)

50 241 0.044
(0.028, 0.064)

0.37

Austria 1254
(299, 2 924)

878
(311, 1 938)

2 065 1.03
(0.42, 2.09)

2 727
(1 709, 3 910)

55 538 0.049
(0.031, 0.070)

0.40

Azerbaijan 277
(144, 507)

232
(93, 518)

1 742 0.29
(0.16, 0.52)

2 307
(1 479, 3 307)

14 217 0.162
(0.104, 0.233)

0.23

Bangladesh 853
(241, 2 227)

594
(274, 1 100)

9 512 0.15
(0.06, 0.31)

381
(246, 552)

4 474 0.085
(0.055, 0.123)

0.25

Belarus 428
(119, 996)

358
(160, 676)

1 499 0.52
(0.21, 1.04)

3 228
(1 998, 4 637)

18 682 0.173
(0.107, 0.248)

Belgium 971
(338, 2 060)

3 667
(1 249, 8 

023)

2 909 1.59
(0.65, 3.21)

2 312
(1 474, 3 321)

51 747 0.045
(0.028, 0.064)

0.00

Benin 188
(56, 438)

156
(65, 301)

2 616 0.13
(0.05, 0.27)

250
(152, 365)

3 127 0.080
(0.049, 0.117)

0.26

Bolivia 169
(42, 442)

72
(27, 163)

307 0.78
(0.24, 1.90)

460
(275, 693)

8 255 0.056
(0.033, 0.084)

0.45

Botswana 64
(10, 169)

43
(10, 110)

29 3.70
(0.76, 9.43)

1 232
(755, 1 859)

15 031 0.082
(0.050, 0.124)

0.18

Brazil 666
(133, 2 000)

155
(69, 302)

629 1.30
(0.36, 3.69)

1 231
(788, 1 743)

14 760 0.083
(0.053, 0.118)

0.17

Bulgaria 521
(127, 1 220)

204
(87, 420)

1 155 0.63
(0.23, 1.26)

4 536
(2 883, 6 742)

22 437 0.202
(0.129, 0.300)

0.22

Burkina Faso 122
(48, 278)

77
(36, 165)

696 0.29
(0.13, 0.63)

71
(42, 107)

2 069 0.034
(0.021, 0.051)

0.53

Cabo Verde 63
(20, 157)

240
(86, 551)

2 752 0.11
(0.04, 0.24)

376
(239, 542)

6 449 0.058
(0.037, 0.084)

0.12
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Cambodia 469
(145, 1 062)

319
(143, 625)

2 705 0.29
(0.12, 0.60)

415
(271, 595)

4 238 0.098
(0.064, 0.140)

0.24

Cameroon 217
(57, 536)

149
(57, 316)

1 646 0.22
(0.08, 0.51)

341
(205, 498)

3 777 0.090
(0.054, 0.132)

0.30

Canada 383
(133, 829)

169
(86, 303)

559 0.99
(0.46, 1.90)

2 418
(1 514, 3 508)

48 197 0.050
(0.031, 0.073)

0.02

Central 
African 
Re-public

394
(121, 977)

293
(131, 664)

266 2.58
(0.97, 6.18)

97
(59, 144)

860 0.113
(0.069, 0.167)

0.69

Chad 74
(24, 179)

52
(23, 116)

229 0.55
(0.21, 1.30)

56
(35, 84)

1 610 0.035
(0.022, 0.052)

0.60

Chile 139
(62, 233)

136
(56, 278)

1 210 0.23
(0.13, 0.39)

2 367
(1 487, 3 381)

24 832 0.095
(0.060, 0.136)

0.55

China 565
(80, 2 287)

86
(46, 158)

3 064 0.21
(0.05, 0.77)

1 390
(899, 1 953)

15 272 0.091
(0.059, 0.128)

0.07

Colombia 642
(88, 2 534)

115
(53, 231)

999 0.76
(0.16, 2.63)

858
(531, 1 237)

14 836 0.058
(0.036, 0.083)

0.29

Democratic 
Republic of 
the Congo

624
(63, 1 754)

468
(84, 1 219)

535 2.04
(0.29, 5.52)

60
(36, 88)

1 050 0.057
(0.034, 0.084)

0.64

Congo 68
(14, 178)

32
(11, 72)

156 0.64
(0.18, 1.48)

394
(237, 582)

3 796 0.104
(0.062, 0.153)

0.55

Costa Rica 1 472
(153, 5 745)

374
(145, 818)

2 698 0.68
(0.14, 2.30)

904
(552, 1 334)

20 928 0.043
(0.026, 0.064)

0.25

Côte d'Ivoire 81
(20, 205)

47
(17, 102)

1 224 0.11
(0.03, 0.23)

257
(157, 391)

5 049 0.051
(0.031, 0.077)

0.35

Croatia 702
(139, 1 983)

1 047
(338, 2 475)

2 271 0.77
(0.30, 1.63)

5 460
(3451, 7 688)

27 697 0.197
(0.125, 0.278)

0.19

Cuba 223
(62, 538)

146
(64, 297)

773 0.48
(0.19, 0.99)

1 548
(955, 2 235)

12 097 0.128
(0.079, 0.185)

0.14

Cyprus 1 120
(621, 2 057)

3 200
(951, 7 262)

5 157 0.84
(0.36, 1.74)

2 354
(1 468, 3 405)

28 109 0.084
(0.052, 0.121)

Czechia 714
(209, 1 506)

856
(319, 1 809)

2 402 0.65
(0.29, 1.20)

5 342
(3 417, 7 696)

40 493 0.132
(0.084,0.190)

Denmark 617
(227, 1 307)

2 011
(825, 4 106)

1 481 1.78
(0.86, 3.28)

2 268
(1 453, 3 176)

56 965 0.040
(0.026, 0.056)

0.29

Djibouti 17
(5,42)

22
(10, 42)

41 0.96
(0.40, 1.98)

336
(203, 501)

4 810 0.070
(0.042, 0.104)

0.06

Dominican 
Republic

795
(139, 2 260)

574
(208, 1 309)

4 207 0.33
(0.11, 0.71)

1 343
(812, 1 975)

17 407 0.077
(0.047, 0.113)

0.21

Ecuador 1 188
(133, 3 880)

359
(162, 709)

3 325 0.47
(0.10, 1.27)

1 067
(675, 1 512)

11 487 0.093
(0.059, 0.132)

0.41

Egypt 1 065
(692, 1 888)

390
(184, 778)

34 186 0.04
(0.03, 0.07)

775
(487, 1 153)

11 161 0.069
(0.044, 0.103)

0.10

El Salvador 701
(102, 2 508)

215
(94, 443)

2 463 0.37
(0.10, 1.09)

514
(306, 758)

8 780 0.058
(0.035, 0.086)

0.20
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Equatorial 
Guinea

799
(66, 2 291)

511
(76, 1 369)

3 393 0.39
(0.05, 1.03)

478
(283, 712)

17 594 0.027
(0.016, 0.040)

0.56

Eritrea 62
(23, 133)

22
(10, 45)

155 0.55
(0.24, 1.07)

138
(83, 210)

1 993 0.069
(0.042, 0.106)

0.52

Estonia 2 153
(524, 4 968)

670
(297, 1 354)

1 043 2.71
(0.97, 5.59)

5 068
(3 188, 7510)

35 382 0.143
(0.090, 0.212)

0.20

Eswatini 81
(29, 181)

77
(33, 156)

693 0.23
(0.10, 0.45)

634
(395, 942)

8 564 0.074
(0.046, 0.110)

0.30

Ethiopia 332
(105, 735)

123
(56, 263)

2 109 0.22
(0.09, 0.45)

41
(25, 61)

2 128 0.019
(0.012, 0.029)

0.37

Finland 1 167
(363, 2 673)

671
(330, 1 228)

2 786 0.66
(0.32, 1.31)

3 313
(2 141, 4 795)

48 590 0.068
(0.044, 0.099)

France 839
(218, 1 866)

543
(225, 1 135)

1 664 0.83
(0.34, 1.57)

2 024
(1 286, 2 935)

48 052 0.042
(0.027, 0.061)

0.20

Gabon 456
(50, 1 438)

83
(20, 200)

804 0.67
(0.10, 1.97)

842
(518, 1 221)

14 528 0.058
(0.036, 0.084)

0.39

Gambia 169
(64, 362)

106
(49, 206)

1 720 0.16
(0.07, 0.31)

76
(46, 110)

2 046 0.037
(0.023, 0.054)

0.30

Georgia 96
(33, 227)

132
(56, 276)

1 523 0.15
(0.07, 0.27)

3 147
(1 989, 4 495)

14 107 0.223
(0.141, 0.319)

0.25

Germany 589
(203, 1 303)

952
(404, 1 875)

2 020 0.76
(0.37, 1.39)

3 502
(2 195, 5 060)

53 862 0.065
(0.041, 0.094)

0.06

Ghana 74
(24, 176)

47
(22, 87)

2 424 0.05
(0.02, 0.10)

377
(232, 553)

5 231 0.072
(0.044, 0.106)

0.36

Greece 1 039
(515, 2 183)

354
(126, 791)

1 973 0.71
(0.38, 1.32)

3 476
(2 218, 5 001)

29 091 0.120
(0.076, 0.172)

0.26

Guatemala 1 022
(121, 4 182)

379
(161, 731)

3 516 0.40
(0.10, 1.31)

810
(484, 1 187)

8 370 0.097
(0.058, 0.142)

0.34

Guinea 1 53
(42, 412)

63
(27, 130)

489 0.44
(0.16, 1.04)

71
(43, 104)

2 492 0.029
(0.017, 0.042)

0.32

Guinea-Bissau 795
(194, 1 880)

142
(65, 285)

1 667 0.56
(0.18, 1.22)

88
(53, 131)

1 870 0.047
(0.028, 0.070)

0.36

Guyana 748
(164, 1 935)

324
(89, 794)

1 694 0.63
(0.17, 1.49)

2 138
(1 301, 3 106)

13 870 0.154
(0.094, 0.224)

0.26

Haiti 164
(49, 422)

199
(90, 382)

3 643 0.10
(0.04, 0.21)

502
(301, 740)

3 187 0.157
(0.094, 0.232)

0.47

Honduras 1 311
(160, 4 804)

149
(71, 278)

1 818 0.80
(0.15, 2.73)

409
(240,605)

5 471 0.075
(0.044, 0.111)

0.41

Hungary 629
(152, 1 443)

802
(293, 1 764)

2 090 0.69
(0.29, 1.29)

6 944
(4 355, 9 780)

31 184 0.223
(0.140, 0.314)

0.12

Iceland 81
(20, 241)

78
(35, 157)

444 0.36
(0.15, 0.79)

1 952
(1 203, 2 850)

55 630 0.035
(0.022, 0.051)

India 884
(341, 1 953)

166
(79, 317)

8 162 0.13
(0.06, 0.27)

458
(296, 642)

6 370 0.072
(0.047, 0.101)

0.24

Indonesia 1 368
(220, 4 357)

347
(124, 766)

6 552 0.26
(0.06, 0.82)

636
(383, 909)

11 529 0.055
(0.033, 0.079)

0.20
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Iran (Islamic 
Republic of)

691
(170, 2 005)

45
(23, 85)

2 709 0.27
(0.07, 0.76)

466
(301, 665)

13 122 0.036
(0.023, 0.051)

0.14

Iraq 322
(130, 765)

104
(45, 206)

1 676 0.25
(0.12, 0.52)

1 336
(826, 1 916)

9 784 0.137
(0.084, 0.196)

0.54

Ireland 1 416
(417, 3 186)

1 337
(557, 2 710)

872 3.16
(1.44, 5.75)

2 024
(1 241, 2 952)

83 673 0.024
(0.015, 0.035)

0.20

Israel 705
(463, 1 182)

1 605
(530, 3 730)

7 736 0.30
(0.15, 0.57)

1 605
(999, 2 376)

41 259 0.039
(0.024, 0.058)

0.04

Italy 882
(255, 2 183)

805
(287, 1 919)

3 858 0.44
(0.19, 0.93)

2 834
(1 791, 4 099)

42 367 0.067
(0.042, 0.097)

0.32

Jamaica 696
(69, 2 437)

544
(212, 1 195)

4 526 0.27
(0.08, 0.77)

1 566
(976, 2 261)

10 061 0.156
(0.097, 0.225)

0.28

Japan 2 680
(1 940, 4 

083)

1 526
(672, 3 151)

12 876 0.33
(0.22, 0.50)

1 876
(1 178, 2 714)

41 963 0.045
(0.028, 0.065)

0.22

Jordan 234
(62, 712)

134
(57, 261)

4 370 0.08
(0.03, 0.20)

994
(615, 1 414)

9 605 0.103
(0.064, 0.147)

2.05

Kazakhstan 12
(4, 26)

6
(3, 11)

102 0.17
(0.08, 0.35)

1 965
(1 236, 2 758)

25 475 0.077
(0.049, 0.108)

0.05

Kenya 104
(35, 232)

73
(35, 148)

1 702 0.10
(0.04, 0.21)

218
(137,318)

4 495 0.048
(0.031, 0.071)

0.32

Republic of 
Korea 

1 735
(866,3 952)

3 209
(1 304, 6 

912)

2 3430 0.21
(0.10, 0.42)

1 658
(1 017, 2 407)

42 306 0.039
(0.024, 0.057)

0.04

Kuwait 889
(614, 1 485)

3 352
(997, 7 806)

6 318 0.67
(0.28, 1.38)

2 308
(1 459, 3 289)

47 793 0.048
(0.031, 0.069)

0.00

Kyrgyzstan 88
(61, 133)

33
(15, 65)

384 0.31
(0.21, 0.48)

607
(399, 865)

5 178 0.117
(0.077, 0.167)

0.11

Lao People’s 
Democratic 
Republic

544
(153, 1 408)

406
(181, 794)

4 054 0.23
(0.09, 0.49)

486
(306, 713)

7 631 0.064
(0.040, 0.093)

0.28

Latvia 2 457
(458, 5 586)

496
(205, 1 039)

1 121 2.63
(0.77, 5.54)

6 692
(4 261, 9 512)

29 802 0.225
(0.143, 0.319)

0.15

Lebanon 126
(80, 239)

293
(105, 646)

4 559 0.09
(0.05, 0.18)

632
(396, 916)

17 156 0.037
(0.023, 0.053)

1.95

Lesotho 240
(30, 845)

37
(17, 72)

111 2.50
(0.50, 8.03)

643
(391, 950)

2 583 0.249
(0.151, 0.368)

0.47

Liberia 519
(62, 1 663)

180
(28, 477)

1 395 0.50
(0.09, 1.42)

81
(51, 120)

1 493 0.054
(0.034, 0.080)

0.35

Libya 39
(23, 77)

10
(5, 18)

235 0.21
(0.12, 0.39)

1 482
(921, 2 122)

13 710 0.108
(0.067, 0.155)

0.23

Lithuania 757
(204, 1 659)

689
(296, 1 409)

1 098 1.32
(0.57, 2.62)

6 131
(3 926, 8 696)

34 933 0.176
(0.112, 0.249)

0.24

Madagascar 57
(17, 139)

23
(10, 48)

251 0.32
(0.12, 0.70)

92
(55, 138)

1 576 0.059
(0.035, 0.087)

1.39

Malawi 157
(45, 392)

91
(39, 186)

1 144 0.22
(0.08, 0.47)

58
(34, 86)

1 514 0.038
(0.023, 0.057)

0.92
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Malaysia 614
(108, 2 081)

311
(108, 655)

8 124 0.11
(0.03, 0.31)

1 137
(712, 1 647)

26 891 0.042
(0.026, 0.061)

1.12

Mali 44
(14, 105)

26
(11, 58)

398 0.18
(0.07, 0.42)

62
(38, 91)

2 212 0.028
(0.017, 0.041)

1.05

Mauritania 16
(6, 33)

9
(4, 18)

127 0.19
(0.08, 0.39)

268
(170, 390)

5 389 0.050
(0.031, 0.072)

0.24

Mexico 409
(77, 1 347)

65
(32, 127)

877 0.54
(0.14, 1.62)

1 419
(880, 2 052)

19 843 0.072
(0.044, 0.103)

0.21

Moldova 792
(29, 3 210)

255
(88, 560)

1 515 0.69
(0.13, 2.30)

3 188
(2 056, 4 528)

10 569 0.302
(0.195, 0.428)

1.04

Mongolia 34
(11, 88)

14
(6, 28)

40 1.20
(0.47, 2.85)

1 049
(639, 1 571)

11 999 0.087
(0.053, 0.131)

0.12

Montenegro 1 506
(277, 3 791)

647
(208, 1 488)

3 477 0.62
(0.21, 1.32)

2 778
(1 707, 4 007)

20 198 0.138
(0.085, 0.198)

0.08

Morocco 200
(32, 708)

28
(13, 55)

972 0.23
(0.05, 0.75)

732
(447, 1 098)

7 601 0.096
(0.059, 0.144)

0.13

Mozambique 114
(27, 325)

48
(16, 107)

232 0.70
(0.20, 1.70)

73
(43, 110)

1 324 0.055
(0.033, 0.083)

0.94

Myanmar 864
(287, 2 201)

530
(247, 1 008)

4 438 0.31
(0.13, 0.69)

583
(363, 855)

4 675 0.125
(0.078, 0.183)

0.19

Namibia 58
(18, 132)

15
(6, 29)

49 1.49
(0.56, 3.13)

897
(545, 1 290)

10 263 0.087
(0.053, 0.126)

0.38

Nepal 472
(189, 950)

362
(168, 697)

5 857 0.14
(0.07, 0.27)

343
(209, 499)

3 666 0.094
(0.057, 0.136)

0.25

Netherlands 
(Kingdom 
of the)

963
(369, 2 030)

4 557
(1 642, 9 

889)

9 152 0.60
(0.25, 1.22)

2 135
(1 348, 3 069)

56 562 0.038
(0.024, 0.054)

0.09

New Zealand 551
(120, 1 613)

410
(195, 770)

1 148 0.84
(0.33, 1.93)

2 316
(1 479, 3 361)

43 382 0.053
(0.034, 0.077)

Nicaragua 547
(105, 1 529)

199
(79, 416)

1 119 0.67
(0.18, 1.81)

420
(256, 617)

5 668 0.074
(0.045, 0.109)

0.30

Niger 42
(16, 89)

21
(9, 46)

2 18 0.29
(0.12, 0.62)

43
(27, 64)

1 218 0.036
(0.022, 0.053)

0.66

Nigeria 143
(46, 309)

68
(33, 133)

3 246 0.06
(0.03, 0.13)

180
(111, 265)

5 183 0.035
(0.021, 0.051)

0.43

North 
Macedonia

1 059
(204, 2 485)

180
(63, 401)

2 276 0.54
(0.16, 1.18)

3 052
(1 891, 4 455)

16 137 0.189
(0.117, 0.276)

0.22

Norway 1 124
(389, 2 689)

1 262
(606, 2 261)

6 659 0.36
(0.18, 0.66)

1 959
(1 228, 2 830)

64 455 0.030
(0.019, 0.044)

0.13

Oman 304
(229, 473)

121
(54, 258)

2 225 0.19
(0.13, 0.30)

2 097
(1 310, 3 008)

34 663 0.060
(0.038, 0.087)

0.19

Pakistan 388
(206, 709)

241
(110, 473)

5 904 0.11
(0.06, 0.19)

481
(307, 684)

4 547 0.106
(0.067, 0.150)

0.20

Panama 410
(84, 1 126)

284
(118, 634)

1 389 0.50
(0.18, 1.11)

1 999
(1 182, 3 003)

30 020 0.067
(0.039, 0.100)

0.48
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Paraguay 281
(73, 758)

144
(61, 287)

562 0.76
(0.26, 1.72)

1 073
(651, 1 561)

13 823 0.078
(0.047, 0.113)

0.24

Peru 838
(152, 2 646)

148
(54, 308)

1 153 0.86
(0.19, 2.60)

639
(383, 947)

12 483 0.051
(0.031, 0.076)

0.31

Philippines 926
(195, 2 782)

273
(124, 536)

7 009 0.17
(0.05, 0.47)

550
(348, 796)

8 303 0.066
(0.042, 0.096)

0.15

Poland 755
(192, 1 838)

711
(281, 1 497)

2 163 0.68
(0.28, 1.33)

4 697
(2 966, 6 861)

31 235 0.150
(0.095, 0.220)

0.16

Portugal 1 422
(287, 3 640)

530
(184, 1 235)

1 951 1.00
(0.35, 2.22)

2 938
(1 845, 4 211)

33 967 0.086
(0.054, 0.124)

0.14

Qatar 733
(200, 1 808)

2 255
(835, 5 028)

8 150 0.37
(0.15, 0.80)

1 457
(937, 2 079)

91 960 0.016
(0.010, 0.023)

Romania 712
(162, 1 940)

356
(136, 758)

1 822 0.59
(0.22, 1.30)

6 739
(4 306, 9 623)

28 735 0.235
(0.150, 0.335)

0.22

Russian 
Federation

342
(59, 1 186)

39
(20, 70)

692 0.55
(0.13, 1.78)

2 909
(1 853, 4 106)

27 961 0.104
(0.066, 0.147)

0.03

Rwanda 154
(52, 367)

117
(57, 236)

3 623 0.07
(0.03, 0.15)

53
(30, 81)

2 073 0.026
(0.015, 0.039)

0.54

Saudi Arabia 11
(5, 28)

6
(3, 11)

223 0.08
(0.04, 0.16)

3 247
(2 001, 4 608)

45 797 0.071
(0.044, 0.101)

Senegal 116
(47, 243)

77
(37, 154)

901 0.21
(0.10, 0.42)

252
(155, 361)

3 401 0.074
(0.046, 0.106)

0.24

Serbia 634
(171, 1 485)

320
(134, 651)

2 229 0.43
(0.17, 0.88)

3 540
(2 270, 5 131)

16 554 0.214
(0.137, 0.310)

0.45

Sierra Leone 92
(29, 213)

54
(23, 107)

1 932 0.08
(0.03, 0.16)

71
(42, 107)

1 642 0.043
(0.026, 0.065)

0.41

Slovakia 1 083
(223, 2 806)

913
(322, 2 047)

1 762 1.13
(0.42, 2.28)

5 483
(3 499, 7 871)

30 852 0.178
(0.113, 0.255)

0.79

Slovenia 426
(132, 953)

1 510
(545, 3 326)

2 618 0.74
(0.32, 1.52)

3 564
(2 207, 5 333)

37 509 0.095
(0.059, 0.142)

Somalia 40
(14, 88)

25
(10, 52)

300 0.22
(0.08, 0.47)

83
(50, 124)

1 143 0.072
(0.043, 0.108)

0.53

South Africa 87
(14, 269)

21
(11, 39)

194 0.56
(0.15, 1.47)

1 263
(816, 1 764)

13 969 0.090
(0.058, 0.126)

0.18

South Sudan 88
(29, 222)

57
(25, 127)

40 3.59
(1.40, 8.49)

50
(29, 75)

1 273 0.039
(0.023, 0.059)

0.99

Spain 833
(248, 1 882)

324
(129, 716)

1 931 0.60
(0.25, 1.18)

2 375
(1 480, 3 428)

39 399 0.060
(0.038, 0.087)

0.28

Sri Lanka 381
(118, 1 099)

180
(79, 356)

7 574 0.07
(0.03, 0.17)

564
(353, 817)

12 990 0.043
(0.027, 0.063)

0.12

Sudan 69
(26, 155)

41
(19, 90)

575 0.19
(0.08, 0.42)

131
(80, 189)

4 445 0.029
(0.018, 0.042)

0.32

Suriname 4 094
(380, 12 

146)

2 981
(589, 7 681)

11 798 0.60
(0.09, 1.64)

1 734
(1 061, 2 510)

17 340 0.100
(0.061, 0.145)

0.20
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Sweden 681
(193, 1 604)

838
(397, 1 572)

2 496 0.61
(0.27, 1.13)

2 534
(1 644, 3 696)

53 110 0.048
(0.031, 0.070)

0.20

Switzerland 477
(164, 1 062)

1 742
(608, 3 854)

2 609 0.85
(0.35, 1.73)

2 110
(1 343, 3 080)

70 542 0.030
(0.019, 0.044)

Syrian Arab 
Republic

39
(17, 73)

18
(8, 36)

1 381 0.04
(0.02, 0.08)

175
(110, 258)

2561 0.068
(0.043, 0.101)

0.17

Tajikistan 200
(130, 309)

107
(44,218)

1 373 0.22
(0.14, 0.37)

550
(352, 784)

3 489 0.158
(0.101, 0.225)

0.21

Tanzania 
(United 
Republic of)

180
(61, 393)

98
(44, 195)

1 018 0.27
(0.11, 0.56)

217
(129, 317)

2 495 0.087
(0.052, 0.127)

0.65

Thailand 568
(142, 1 655)

238
(113, 434)

4 594 0.18
(0.06, 0.42)

1 081
(651, 1 591)

17 586 0.061
(0.037, 0.090)

0.99

Timor-Leste 269
(72, 765)

313
(128, 650)

2 047 0.28
(0.12, 0.62)

367
(221, 540)

3 508 0.105
(0.063, 0.154)

0.34

Togo 68
(26, 158)

43
(21, 88)

873 0.13
(0.06, 0.27)

78
(48, 113)

2 065 0.038
(0.023, 0.055)

0.40

Tunisia 175
(27, 664)

35
(16, 66)

1 281 0.16
(0.04, 0.55)

624
(368, 921)

10 976 0.057
(0.034, 0.084)

0.08

Türkiye 1 493
(324, 4 318)

165
(76, 306)

3 674 0.45
(0.13, 1.23)

1 182
(715, 1 675)

27 136 0.044
(0.026, 0.062)

0.09

Turkmenistan 43
(29, 73)

18
(9, 36)

277 0.22
(0.14, 0.39)

1 969
(1 234, 2 763)

14 247 0.138
(0.087, 0.194)

0.23

Uganda 163
(56, 363)

93
(43, 191)

1 506 0.17
(0.07, 0.35)

46
(27, 67)

2 248 0.020
(0.012, 0.030)

0.64

Ukraine 372
(56, 1 293)

74
(35, 150)

1 274 0.35
(0.08, 1.08)

1 777
(1 175, 2 477)

11 797 0.151
(0.100, 0.210)

0.16

United Arab 
Emirates

1 843
(1 532, 2 

390)

1 008
(375, 2 207)

13 264 0.21
(0.15, 0.33)

3 438
(2 247, 4 917)

71 162 0.048
(0.032, 0.069)

United 
Kingdom of 
Great Britain 
and Northern 
Ireland

1 428
(414, 3 179)

739
(290, 1 584)

1 067 2.03
(0.87, 3.89)

2 910
(1 827, 4 161)

46 856 0.062
(0.039, 0.089)

0.22

United States 
of America 

431
(138, 959)

95
(52, 161)

457 1.15
(0.48, 2.33)

3 890
(2 452, 5 651)

61 038 0.064
(0.040, 0.093)

0.38

Uruguay 80
(17, 197)

203
(92, 387)

357 0.79
(0.35, 1.55)

2 922
(1 856, 4 198)

23 341 0.125
(0.080, 0.180)

0.05

Uzbekistan 292
(165, 493)

72
(34, 137)

2 522 0.14
(0.09, 0.23)

1 011
(633, 1 432)

7 385 0.137
(0.086, 0.194)

0.18

Venezuela 
(Bolivarian 
Republic of)

359
(75, 936)

110
(47, 223)

350 1.34
(0.39, 3.50)

615
(378, 911)

5 388 0.114
(0.070, 0.169)

0.28

Viet Nam 1 049
(263, 3 461)

343
(164, 661)

7 643 0.18
(0.06, 0.50)

489
(307, 703)

7 766 0.063
(0.040, 0.090)

0.24

West Bank 
and Gaza

67
(15, 118)

309
(82, 756)

4 688 0.08
(0.03, 0.18)

408
(253, 572)

5 970 0.068
(0.042, 0.096)

0.18
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TABLE A4 (cont.)	Agricultural externalities impact ratio (AEIR), dietary patterns 
impact ratio (DPIR) and social distribution impact ratio (SDIR) 
indicators and components for 154 countries in 2020

Country
ALENC

(2020 PPP 
dollars/ha)

ALEOC
(2020 PPP 
dollars/ha)

ALEB
(2020 PPP 
dollars/ha)

AEIR
DPPCAP

(2020 PPP 
dollars/capita)

GDPCAP
(2020 PPP 

dollars/
capita)

DPIR SDIR

Yemen 30
(15, 58)

12
(6, 25)

524 0.08
(0.04, 0.16)

123
(76, 180)

2 131 0.058
(0.036, 0.084)

0.25

Zambia 160
(43, 389)

89
(37, 194)

100 2.50
(0.87, 5.60)

79
(47, 117)

3 421 0.023
(0.014, 0.034)

1.09

Zimbabwe 110
(42, 241)

46
(21, 91)

270 0.58
(0.26, 1.17)

338
(211, 504)

3 446 0.098
(0.061, 0.146)

0.66

Notes: ALENC – agrifood production and land use and land-use change (LULUC) external natural capital cost; 
ALEOC – agrifood production and LULUC external other capital cost; ALEB – agrifood production and LULUC 
economic benefits; AEIR – agricultural externalities impact ratio; DPPCAP – dietary pattern productivity losses 
per capita; GDPCAP – GDP PPP per capita; DPIR – dietary patterns impact ratio; SDIR – social distribution 
impact ratio. 

Source: Author’s own elaboration.





This background paper to The State of Food and Agriculture 2023 examines the 
annual hidden costs of agrifood systems across 2016–2023 for 154 countries. 
Hidden costs include environmental hidden costs from greenhouse gas emissions, 
nitrogen emissions, land-use transitions, and blue water withdrawals; social hidden 
costs associated with undernourishment and poverty; and health hidden costs from 
unhealthy dietary patterns. The expected value of hidden costs is around 13 trillion 
2020 purchasing power parity (PPP) dollars. This is equivalent to approximately 
10 percent of global gross domestic product (GDP) PPP in 2023 and around 
35 billion 2020 PPP dollars per day.

Environmental hidden costs averaged around 3 trillion 2020 PPP dollars over the 
2016–2023 period; health-related costs averaged 9.3 trillion 2020 PPP dollars; 
and social hidden costs averaged 560 billion 2020 PPP dollars. Health hidden costs 
are the largest across all world regions, apart from sub-Saharan Africa, where 
costs from poverty and undernourishment prevail. Hidden costs also report an 
upward trend from 2016 to 2023, driven primarily by health hidden costs.  
Overall, hidden costs place a disproportionate burden on low-income countries.

Left unchecked, these hidden costs will depress future growth and development. 
However, these hidden costs do not reflect the GDP PPP loss that may be avoided by 
transitioning to more sustainable agrifood systems. In other words, while these may 
be avoidable, the quantified hidden costs do not indicate the costs of transitioning 
to alternative systems. Subsequent studies are needed to quantify these.
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