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Introduction 
 

Target 2.3 of the 2030 Agenda for Sustainable Development aims to double the agricultural 

productivity and incomes of small-scale food producers, and is monitored by Sustainable Development 

Goal (SDG) Indicators 2.3.1 and 2.3.2, which are both under the custodianship of the Food and 

Agriculture Organization of the United Nations (FAO).  

While Indicator 2.3.1 measures the average value of agricultural production per labour unit, providing 

a measure of average partial factor productivity of agricultural holdings, Indicator 2.3.2 estimates the 

average income that small-scale food producers derive from their agricultural production activities. 

Among the mandatory disaggregation dimensions of these two indicators there are the size of the 

holding (small versus non-small) – which is implemented by applying the official definition of small-

scale food producers developed by FAO to enhance estimates’ international comparability (Khalil et 

al., 2017) – and the sex of the holding’s head. 

Although disaggregation at the subnational level is not included in the set of “mandatory” dimensions 

for disaggregation of indicators monitoring Target 2.3, producing estimates at the local level may 

prove to be a much more effective and relevant tool than national-level aggregates for effective 

planning and decision making. In this respect, being the computation of Indicators 2.3.1 and 2.3.2 

normally based on sample surveys microdata, the production of reliable granular subnational 

estimates is often not possible with standard estimation approaches. Indeed, despite collecting 

detailed information on socio-economic characteristics of target populations, most sample surveys 

are characterized by sampling sizes that are either not large enough to guarantee reliable direct 

estimates for all subpopulations of interest, or that do not cover all possible disaggregation domains 

(Falorsi et al., 2022). 

This kind of issues can be addressed at different stages of the statistical production process. During 

the survey design phase, they can be tackled by adopting sampling strategies guaranteeing an 

observed set of sampling units for every disaggregation domain. Although potentially optimal, several 

studies show how this approach quickly results in an exponential increase of the necessary sampling 

size and, consequently, survey costs and complexity (FAO, 2021; Kish, 1987). Alternatively, data 

disaggregation can be addressed at the data analysis stage, by adopting indirect estimation 

approaches that borrow strength from related disaggregation domains and/or periods, thus resulting 

in an increase of the actual sample size (Rao and Molina, 2015). 

Small area estimation (SAE) methods are among the possible indirect (or model-based) estimation 

approaches that can be adopted to deal with data disaggregation at the analysis stage. These 
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techniques allow combining survey data with auxiliary information coming from additional data 

sources, and are seen as cost-effective ways to produce precise estimates of disaggregated 

parameters. Traditionally, SAE techniques, have relied on the integration of survey microdata with 

information from population and agricultural censuses or administrative records through explicit 

models linking the variable of interest to a set of auxiliary variables retrieved from these sources. 

However, with more and more data made available to National Statistical Systems (NSS) from multiple 

innovative data sources, other types of auxiliary data can be considered for the production of small 

area estimates of SDG indicators. In this respect, the 2030 Agenda explicitly stresses the need for new 

and enhanced data integration strategies, including the exploitation of the potential contribution of 

geospatial information systems and other big data sources.  

Within this framework, the present technical report illustrates a case study on the adoption of SAE 

techniques to produce granular subnational estimates of SDG Indicators 2.3.1 and 2.3.2, by integrating 

survey microdata with auxiliary information retrieved from various trustworthy geospatial 

information systems. The technical report starts from and expands results presented in Khalil et al. 

(2022) with the intent of providing practical guidance to National Statistical Offices (NSO) and other 

institutions wanting to implement small area estimation techniques on SDG Indicators 2.3.1 and 2.3.2 

or similar indicators based on surveys microdata. The document is structured as follows. Section 1 

briefly presents SDG Indicators 2.3.1 and 2.3.2, their data sources and required disaggregation 

dimensions, and the main challenges for their computation both at aggregate and disaggregated level. 

Then, the main indirect estimation approaches available to address these challenges – with a 

particular focus on SAE techniques– are presented in Section 2. All the steps for the implementation 

of an area-level SAE approach on SDG Indicators 2.3.1 and 2.3.2 are described in Section 3, discussing 

the data sources used, the selection and preparation of auxiliary variables, and the model estimation. 

Finally, Section 4 presents and discusses the key results of the application and Section 5 outlines the 

main conclusions. 

1. Overview of SDG Indicators 2.3.1 and 2.3.2 and their disaggregation 

dimensions 
 
Target 2.3 of the 2030 Agenda for Sustainable Development prescribes doubling “the agricultural 

productivity and incomes of small-scale food producers, in particular women, Indigenous Peoples, 

family farmers, pastoralists and fishers, including through secure and equal access to land, other 

productive resources and inputs, knowledge, financial services, markets and opportunities for value 

addition and non-farm employment.” 
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The target is monitored by means of two indicators under FAO’s custodianship, namely: 

 Indicator 2.3.1, measuring the value of production per labour unit by classes of 

farming/pastoral/forestry enterprise size; and 

 Indicator 2.3.2, measuring the average income of small-scale food producers, by sex and 

Indigenous Peoples' status. 

The computation of both indicators is based on a methodology proposed by the FAO and endorsed by 

the Inter-Agency and Expert Group on SDG Indicators (IAEG-SDG) in 2018, which is documented in the 

paper “Methodology for computing and monitoring the Sustainable Development Goal Indicators 2.3.1 

and 2.3.2” (FAO, 2019). 

At the base of the approach, the FAO has proposed an internationally agreed definition of small-scale 

food producers with the objective of computing internationally comparable figures for all countries, 

territories and regions (Khalil et al., 2017). This definition identifies small-scale food producers using 

a combination of two criteria, namely the physical size, as expressed by the amount of operated land 

and the number of livestock heads, and the economic size of the holding, as expressed by the total 

value of agricultural production (Figure 1). Both criteria are applied in relative terms, in order to 

enhance international comparability. In practice, small-scale food producers are farmers who: 

 operate an amount of land falling in the bottom 40 percent of the cumulative distribution of 

households’ land size at the national level, measured in hectares;  

 operate a number of livestock falling in the bottom 40 percent of the cumulative distribution 

of the number of animals per household at the national level, measured in tropical livestock 

units (TLUs); and 

 obtain total annual revenues from agricultural activities falling in the bottom 40 percent of 

the cumulative distribution of agricultural revenues per household at the national level, 

measured in purchasing power parity (PPP) USD. 

Within the resulting set of producers identified by these criteria, an additional absolute cap is applied, 

to exclude producers earning a revenue higher than 34 387 PPP USD per year.1 

                                                           
1 The addition of this threshold was one of the recommendations FAO received from a consultation of the Inter-
Agency and Expert Group on Sustainable Development Goal Indicators (IAEG-SDG indicators) on the 
international definition of small-scale food producers. 
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Figure 1: Identification of small-scale food producers 

 

Source: FAO. 2019. Methodology for computing and monitoring the Sustainable Development Goal 

Indicators 2.3.1 and 2.3.2. FAO Statistics Working Paper Series, No. 18–14. Rome, FAO. 
https://doi.org/10.4060/cc3583en 

 

After identifying the population of 𝑁𝑠 small-scale food producers among the 𝑁 food producers (𝑁𝑠 <

𝑁) of a country, SDG Indicators 2.3.1 and 2.3.2 can respectively be expressed as: 

𝑺𝑫𝑮 𝟐. 𝟑. 𝟏 = 𝐼2.3.1
𝑡 =

∑ (
∑ 𝑉𝑖𝑗

𝑡
𝑖 𝑝𝑖𝑗

𝑡

𝐿𝑗
𝑡 )

𝑁𝑠
𝑗=1

𝑁𝑠
=

∑ 𝑦231,𝑗
𝑁𝑠
𝑗=1

𝑁𝑠
   (1) 

𝑺𝑫𝑮 𝟐. 𝟑. 𝟐 = 𝐼2.3.2
𝑡 =

∑ (∑ 𝑉𝑖𝑗
𝑡

𝑖 𝑝𝑖𝑗
𝑡 −𝐶𝑖𝑗

𝑡 )
𝑁𝑠
𝑗=1

𝑁𝑠
=

∑ 𝑦232,𝑗
𝑁𝑠
𝑗=1

𝑁𝑠
   (2)  

Where: 

 𝑉𝑖𝑗
𝑡  is the physical volume of agricultural product 𝑖 sold or used by the small-scale food 

producer 𝑗 ( with 𝑗 = 1, … , 𝑁𝑠) during year 𝑡; 

 𝑝𝑖𝑗
𝑡  is the constant sale price received by the small-scale food producer 𝑗 during year 𝑡 for 

product 𝑖; 

 𝐿𝑗
𝑡 is the number of labour days (full time equivalent) utilized by the small-scale food 

producer 𝑗 during year 𝑡; and 

 𝐶𝑖𝑗
𝑡  is the production cost of agricultural product 𝑖 for the small-scale food producer 𝑗 during 

year 𝑡. 

Being referred to a specific group in the population of agricultural holdings, i.e. the small-scale food 

producers, the ideal data source for both indicators is represented by a single agricultural or integrated 

household survey collecting information on all the variables needed to identify smallholders and 

https://doi.org/10.4060/cc3583en
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compute the two indicators. Although Indicators 2.3.1 and 2.3.2 could also be computed using 

microdata collected through agricultural censuses, data collections of this kind are implemented only 

once or – in limited cases – twice per decade, and usually do not collect the same detail of information 

provided by sample surveys. 

Concerning data disaggregation, indicators selected to monitor Target 2.3 are currently disaggregated 

by holding size, as they are produced for both small and non-small scale food producers, and by the 

sex of the holding head. As reported in the compilation of minimum disaggregation dimensions for 

SDG indicators prepared by the working group on data disaggregation of the IAEG-SDG (United 

Nations Department of Economic and Social Affairs, 2022), Indicator 2.3.1 should also be 

disaggregated by type of product (farming, pastoral, forestry, fishery) and Indicator 2.3.2 by the 

Indigenous Peoples' status of the holding’s head. In addition, the Inter-Agency and Expert Group on 

Sustainable Development Goal Indicators (IAEG-SDG indicators) has identified future desirable 

disaggregation dimensions for the two indicators, such as, for example, the geographical level 

(urban/rural, agro-ecological zones, or subnational level). 

Unfortunately, some limitations exist towards the production of both recommended and additional 

disaggregation dimensions for Indicators 2.3.1 and 2.3.2. For example, the disaggregation by type of 

product is often not possible given that most agricultural surveys only cover cropping and livestock 

activities of agricultural holdings, leaving the fishery and forestry sector out of the target. Similarly, 

also the disaggregation by Indigenous Peoples' status is challenging – if not impossible – in most 

countries. First of all, most agricultural surveys collect minimal socio-demographic information on 

holding members which normally do not include the membership of an Indigenous Peoples' group. 

This issue could partly be addressed by resorting to integrated household surveys collecting a brother 

spectrum of demographic information, which are – however – implemented only by few countries in 

the world. 

Concerning data disaggregation by geographic location, which is the object of the case study 

presented in this technical report, several considerations are in order.  

A first level of geographical disaggregation is that distinguishing between the urban or rural location 

of the household/holding. The information on whether the household main dwelling or holding 

establishment is located in an urban or rural area is available in most surveys, making the production 

of indicators monitoring Target 2.3 by this dimension possible in the majority of cases. However, 

different countries use different criteria to define urban and rural areas, which reflect their various 

perspectives as to what constitute different levels of urbanization. It is clear that individual countries 

need to have their own national definitions to be implemented within their NSSs, and used to 



6 
 

disaggregate indicators by urban and rural areas for their own national policy purposes. Nonetheless, 

in order to have meaningful international comparisons of statistical indicators by urban and rural areas 

there is also an undisputed need for an internationally comparable definition. For this reason, six 

international organizations2 have worked together to develop a harmonize methodology to define the 

degree or urbanization of a specific area, distinguishing between cities, towns and semi-dense areas, 

and rural areas. The application of the degree of urbanization to SDG Indicators 2.3.1 and 2.3.2 will be 

discussed in a separate technical report. 

Still in the domain of disaggregation by geographic location, SDG estimates by subnational 

administrative divisions (e.g. by regions, provinces, municipalities depending on the specific country 

context) may prove to be very relevant and valuable for actual planning and policymaking at country 

level. However, the limited size of most survey's samples makes the production of reliable subnational 

estimates in unplanned estimation domains3 a challenging task. As briefly mentioned in the 

introduction, these issues can be addressed at different stages of the statistical production process. 

Theoretically speaking, data disaggregation at subnational level can be addressed at the survey design 

stage, adopting sampling strategies guaranteeing an observed set of sampling units for every 

subnational division for which disaggregated estimates must be produced. Various sampling 

approaches are available to ensure a sufficient sampling size in every subpopulation, such as 

oversampling, deeper stratification, and multiphase sampling with screening of respondents. FAO 

(2021) offers a complete overview of these approaches and the packages of statistical software that 

could be used for their implementation.  These methods, which are not mutually exclusive and could 

be implemented jointly, come with an increase in terms of costs and complexity of survey operations, 

and may become quickly unfeasible when considering very small estimation domains or multiple 

disaggregation dimensions. In addition, these approaches are not relevant in contexts where the 

objective is to make the best possible use of already available data, without repeating and redesigning 

the data collection exercise. 

A different strategy, which has been adopted for the case study presented in this report, consists in 

addressing the limitations arising from the limited sample size of surveys at the analysis stage. This 

can be done by resorting to indirect estimation methods coping with the little sampling information 

available for so-called small areas by borrowing strength from additional data sources that are not 

                                                           
2 The European Commission, the Food and Agriculture Organization of the United Nations, the International 
Labour Organization, the Organisation for Economic Co-operation and Development, the United Nations Human 
Settlements Programme and the Word Bank. 
3 Unplanned estimation domains are those disaggregation domains that are not planned at the sampling design 
stage and, consequently, may not have a sufficient sample size to yield precise estimates (i.e. estimates with a 
low sampling variance). 
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affected by sampling errors. SAE methods may be useful when the direct estimation of a parameter 

of interest in a given disaggregation domain does not reach the pre-specified precision level. 

Furthermore, SAE methods allow obtaining predictions for domains where no sample information is 

available. To achieve a higher reliability then the direct estimator, small area estimation methods 

combine the survey data with an additional data source such as population or agricultural censuses, 

administrative registers, but also GIS and other sources of big data. 

The fundamental concepts for SAE along with the main classes of approaches available in the literature 

are discussed in the next section.   
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2. Principles of small area estimation approaches 
 

Sample surveys, which are cost-effective means to collect detailed information on target phenomena 

at relatively high frequency over time, are normally used to produce estimates for the overall 

population or broad disaggregation domains. In this context, a direct disaggregated estimate of a 

target parameter is a statistics produced using exclusively sample data belonging to the related 

disaggregation domain. Direct estimates are produced using so-called direct estimators that, making 

use of sampling weights, are also known as design-based estimators. Indeed, the inferential 

performance and properties of direct estimators are entirely determined by the underlying sampling 

design (FAO, 2021). 

A key requirement to achieve reliable direct estimates for a given disaggregation domain is the 

presence of a sufficient domain sample size to yield adequate precision, or – in other terms – a small 

sampling variance. When this circumstance is not verified, we are in the presence of so-called small 

areas, i.e. disaggregation domains where too few or no sampling observations are available. 

In practical situations, it is quite uncommon to have an overall sampling size that is large enough to 

guarantee a sufficient number of observations for every possible disaggregation domain. Therefore, 

the use of indirect estimation techniques to borrow strength from auxiliary information on the 

population of interest is often necessary. The range of possible methods to produce indirect 

estimators is vast and goes from the implementation of design-based model assisted approaches, such 

as the generalized regression estimator (Särndal et al., 1992) or the projection estimator (Kim and 

Rao, 2012; FAO, 2022), to model-based approaches such as SAE (Rao and Molina, 2015). SAE 

approaches bring the additional information into the estimation process through an explicit model 

linking the variable of interest to a set of auxiliary variables. More precisely, SAE methods rely on 

mixed models including domain-specific random effects to account for the variability between 

different areas that is not explained by the auxiliary variables. Given the role played by models in the 

small area estimation process, the resulting estimators are often referred to as model-based 

estimators. 

The notation framework needed to discuss most common SAE approaches is introduced in the 

following paragraphs. Let us consider a finite population 𝑈 of 𝑁 units, partitioned into 𝐷 estimation 

domains 𝑈1, 𝑈2, … , 𝑈𝐷 of sizes 𝑁1, 𝑁2, … , 𝑁𝐷. With 𝑑 we denote the 𝑑𝑡ℎ disaggregation domain, while 

𝑗 specifies the 𝑗𝑡ℎ unit of the population. 

Let us now consider a random sample 𝑠 ∈ 𝑆 of size 𝑛 and probability 𝑝(𝑠), where 𝑆 represents the set 

of all possible sample 𝑠 of size 𝑛 that can be drawn from population 𝑈. Units in s can be used to 
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produce direct estimates 𝜃𝑑
𝑑𝑖𝑟 of disaggregation parameters 𝜃𝑑 related to a given variable of interest 

𝑦. When considering continuous variables (e.g. the total quantity produced of a given crop, or the 

household income), typical examples of disaggregation parameters 𝜃𝑑 are the domain total 𝑌𝑑 =

∑ 𝑦𝑗𝑗∈𝑈𝑑
 and mean 𝑌̅𝑑 = 𝑌𝑑/𝑁𝑑.  

In this framework, the most common direct estimators of 𝑌𝑑 and 𝑌̅𝑑 are the corresponding Horvitz-

Thompson (HT) estimators (Horvitz and Thompson, 1952), which can be expressed respectively as 

𝑌̂𝑑 = ∑ 𝑤𝑗𝑦𝑗𝑗∈𝑠𝑑
  and 𝑌̂̅𝑑 = 𝑌̅𝑑/ ∑ 𝑤𝑗𝑗∈𝑠𝑑

. In these last two expressions, 𝑤𝑗 = 1/𝜋𝑗 denotes the 

sampling weights and 𝜋𝑗 = ∑ 𝑝(𝑠){𝑠:𝑗∈𝑠}  the inclusion probability of unit 𝑗. 4  

The HT estimator of 𝑌𝑑 is design unbiased, while the one for 𝑌̅𝑑 is affected by a bias that tends to 

0 with increasing values of 𝑛𝑑. This means that their expected values are or tend to be equal to the 

parameter to be estimated (Cochran, 1977). As a consequence, their reliability is assessed only in 

terms of their precision, i.e. by the extent of their variance. Direct HT estimators are usually 

characterized by unknown variance 𝑉(𝜃𝑑) that needs to be estimated with adequate estimators 

𝑣(𝜃𝑑), for a complete overview of which we refer to Cochran (1977) or Wolter (2007).  

In this framework, a measure of precision that is often used to assess direct estimates is the coefficient 

of variation (CV), which can be expressed as 𝐶𝑉(𝜃𝑑) =
√ 𝑉(𝜃̂𝑑)

𝜃̂𝑑
. When the estimated CV is 

unacceptably high, SAE and other indirect estimation approaches can be used to increase estimates 

precision. Model-based SAE approaches allow considering unexplained heterogeneity among 

domains, and have the potential of providing more precise estimates than those produced with direct 

methods. In addition, by resorting to SAE, it is possible to predict the value of indicators also in out of 

sample domains, meaning domains with sampling size equal to 0. It should be noted that, being based 

on models, SAE estimators are no longer unbiased, and their reliability needs to be assessed in terms 

of their mean squared error (MSE), which provides a joint measure of both accuracy (bias) and 

precision (variance). Hence, the CV of model-based estimators is obtained as 𝐶𝑉(𝜃𝐷
𝑆𝐴𝐸) =

√ 𝑀𝑆𝐸(𝜃̂𝐷
𝑆𝐴𝐸)

𝜃̂𝐷
𝑆𝐴𝐸 . 

The literature on SAE classifies its models into two broad categories identified as area-level and unit-

level models, which are briefly discussed in the two sections below. While area-level approaches 

relate a small area direct estimator 𝜃𝑑  to area-specific auxiliary information and can be adopted also 

                                                           
4 It should be noted that 𝑌̂̅𝑑  has the functional form of a ratio estimator, as both its numerator and denominator 
are sampling estimates. 
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when unit-level data is not available, unit-level models require access to microdata at the unit level, 

as they relate the unit values 𝑦𝑗  to unit-specific covariates (Rao and Molina, 2015). 

2.1 Area-level models 

The Fay-Herriot model (Fay and Herriot, 1979), which is by far the most popular area-level SAE 

approach, is often used for the production of small area estimates in official statistics and research 

thanks to its intuitive application and interpretation. This approach combines a sampling model, 

assuming that the unknown parameter 𝜃𝑑 and the direct estimate 𝜃𝑑
𝑑𝑖𝑟 differ by a sampling error 𝑒𝑑 

and a linking model specifying a relationship between the population value 𝜃𝑑 and a set of domain-

level auxiliary information. 

The sampling model can be formulated as 

𝜃𝑑
𝑑𝑖𝑟 = 𝜃𝑑 + 𝑒𝑑 , 𝑑 = 1, … , 𝐷               (3) 

where 𝜃𝑑
𝑑𝑖𝑟 is a design-unbiased direct estimator and the sampling error 𝑒𝑑 has mean 0 and variance 

𝜎𝑒𝑑
2 . 

On the other hand, the linking model can be expressed as 

𝜃𝑑 = 𝑥𝑑
𝑇𝛽 + 𝑢𝑑 ,   𝑑 = 1, … , 𝐷               (4) 

where 𝛽 = (𝛽1, … , 𝛽𝑃) is the vector of unknown regression parameters and 𝑢𝑑 are domain-specific 

random effects, which are supposed to be normally distributed with mean 0 and variance 𝜎𝑢
2. 

The combination of the sampling and the linking models leads to a special case of linear mixed area-

level model, which can be formalized as follows: 

𝜃𝑑
𝑑𝑖𝑟 = 𝑥𝑑

𝑇𝛽 + 𝑢𝑑 + 𝑒𝑑 , 𝑑 = 1, … , 𝐷   (5) 

The unknown parameters of (5) to be estimated are: 

 the fixed-effects parameters 𝛽; and 

 the variance of the random effects 𝜎𝑢
2. 

Common approaches used to estimate these unknown quantities are the empirical best linear 

unbiased prediction (EBLUP), the empirical Bayesian and the hierarchical Bayesian methods. In 

particular, the EBLUP estimator (Harville, 1991), which is implemented under the classical frequentist 

framework, can be expressed as a weighted average of a direct estimator and a regression synthetic 

component. In symbols: 

𝜃𝑑
𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑑𝜃̂𝑑 + (1 − 𝛾𝑑)𝑥𝑑

𝑇𝛽̂            (6) 
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where 𝛽̂ is the weighted least squares estimator of the regression parameter, and 𝛾𝑑 =
𝜎̂𝑢

2

𝜎̂𝑢
2+𝜎𝑒𝑑

2  is the 

so-called shrinkage factor for domain d, which weights the direct estimate and the regression 

synthetic component, and decreases with increasing sampling variance 𝜎̂𝑒,𝑑
2 . It should be noted that, 

when 𝑛𝑑 = 0 – i.e. in correspondence of out-of-sample domains – 𝛾𝑑 is also equal to 0, and the 

corresponding SAE estimates are produced using only the regression synthetic component 𝑥𝑑
𝑇𝛽̂ of 

𝜃𝑑
𝐸𝐵𝐿𝑈𝑃. 

The basic FH model is based on two fundamental hypothesis: 

1) The error terms 𝑒𝑑 and the random effects 𝑢𝑑 follow a normal distribution with mean 0 and 

variance 𝜎𝑒,𝑑
2  and 𝜎𝑢

2 respectively. In particular, the random effects are supposed to be 

independent and identically distributed. 

2) The auxiliary variables are measured without errors. 

Several extensions of this basic approach are available in the literature to address special situations, 

such as the presence of spatial (Petrucci and Salvati, 2006) or spatio-temporal (Marhuenda et al., 

2013) correlation, heteroscedasticity of random effects (Breidenbach et al., 2018), influential outliers 

(Schoch, 2012), and auxiliary variables affected by measurement errors (Ybarra and Lohr, 2012). 

In addition, it should be noted that the FH assumes the sampling variance 𝜎𝑒,𝑑
2   to be known. However, 

in practical applications also this component needs to be estimated by means of standard direct 

estimators 𝜎̂𝑒𝑑
2 . 

 

2.2 Unit-level models 

Contrarily to area-level approaches, unit-level SAE models require the availability of unit-level 

microdata for both the variable of interest 𝑦𝑗  and the set of auxiliary variables 𝑥𝑗 considered to have 

a good predictive power with respect to the phenomenon of interest. Unit-level models are popular 

in poverty mapping, which is one of the most common applications of small area estimation (Bedi et 

al., 2007). The basic unit-level model, also known as nested error linear regression model (Battese et 

al., 1988), has the following structure: 

𝑦𝑑𝑗 = 𝑥𝑑𝑗
𝑇 𝛽 + 𝑢𝑑 + 𝑒𝑑𝑗 ;    𝑑 = 1, … . , 𝐷;   𝑗 = 1, … . , 𝑛𝑑   (7) 

where 𝑥𝑑𝑗 = (𝑥1,𝑑𝑗, … . , 𝑥𝑝,𝑑𝑗, … . , 𝑥𝑃,𝑑𝑗) is the vector of 𝑃 auxiliary variables for unit 𝑗. 

The model in (7) contains independent and identically distributed domain-specific random effects 𝑢𝑑, 

with 𝑢𝑑~𝑁(0, 𝜎𝑢
2), and unit-level error terms 𝑒𝑑𝑗~𝑁(0, 𝜎𝑒

2). As for area-level models, besides the 
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error variance 𝜎𝑒
2, the unknown parameters are the fixed effect parameters 𝛽 and the variance of 

random effects 𝜎𝑢
2, which can be estimated with EBLUP, empirical Bayes, and hierarchical Bayes 

methods. 

Under the EBLUP approach, the SAE estimator can be formalized as a linear combination of the survey 

regression estimator and a regression-synthetic component:  

𝜃𝑑
𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑑[𝑦̅𝑑 + (𝑋̅𝑑

𝑇𝛽̂  − 𝑥̅𝑑
𝑇𝛽̂ )] + (1 − 𝑦̂𝑑)𝑋̅𝑑

𝑇𝛽̂ 

where 𝑦̅𝑑 is the sample mean of the variable of interest for domain 𝑑, 𝑋̅𝑑
𝑇 and 𝑥̅𝑑

𝑇 are the means of the 

auxiliary information from the additional data source and the survey, respectively, and 𝛽̂, 𝜎̂𝑢
2, and  𝜎̂𝑒

2 

are the estimated parameters. The weight 𝛾𝑑 =
𝜎̂𝑢

2

𝜎̂𝑢
2+

𝜎̂𝑒
2

𝑛𝑑

 measures the amount of unexplained between-

area variability to the total variability, and gives more importance to the survey regression component 

of the estimator with increasing domain sample size 𝑛𝑑.  

Similarly to what seen for area-level models, various extensions of the unit-level approach are 

available in the literature. In particular, while the model in (7) only supports the estimation of means 

and totals, approaches relying on nested error linear regression models allow the estimation of non-

linear indicators (Elbers et al., 2003; Molina and Rao, 2010). These extensions are particularly relevant 

in the context of the SDG monitoring framework, where many of the indicators are expressed as ratios 

and proportions. Additional extensions allow to include sampling weights in the estimation process 

(You and Rao, 2002), address the presence of heteroscedasticity in the error term (Breidenbach et al., 

2018), and produce estimates which are robust to influential outliers (Schoch, 2012).  

 

2.3 Practical considerations for small area estimation implementation 

Despite their increasing popularity, SAE should not be seen as the solution to any data disaggregation 

problem, and there are various considerations that an NSO should make before engaging in the 

production of indirect estimates. 

First, model-based approaches have stricter data requirements than direct estimation methods, with 

unit-level models being more data intensive than area-level ones. In this respect, the confidentiality 

concerns that may limit the access to microdata on individual units should be taken into account 

before embarking in the process of producing SAE.  

Being based on models, assumptions underlying implemented SAE techniques need to be carefully 

validated through adequate diagnostic methods. In addition, the bias of small area estimates needs 

to be measured to assess the reliability of final estimates. 
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An important prerequisite for the construction of SAE models with satisfactory predictive power is the 

availability of auxiliary variables of good quality. Traditional sources of this additional information are 

population and agricultural census as well as administrative records.  Census data have the advantage 

of providing a complete coverage of target populations and can offer valid socio-economic predictors 

of the variable of interest. However, the low frequency at which censuses are usually implemented 

limits their use for the production of disaggregated statistics on an annual basis. Administrative 

records, which are often generated as side product of government operations, do not suffer from this 

drawback. However, data of this kind are not produced with the primary purpose of computing official 

statistics, and, as a consequence, their accuracy, coverage, content, and characteristics need to be 

carefully assessed before them being used for statistical purposes (Erciulescu et al., 2021). Some 

examples of applications of SAE based on administrative records are given in Rao and Molina (2015), 

Erciulescu et al. (2021), and Zhang and Giusti (2016).  

The huge amount of digital and geospatial information produced by a wide range of tools and 

technologies nowadays offers good alternative sources of auxiliary variables for SAE production. These 

rich large-scale datasets, also referred to as big data, generally cover a vast portion of the population 

within a territory, often reaching nationwide coverage. Potential sources of big data are social 

networks, GISs, and records generated by human transactions and interactions. These “new” or 

“alternative” data sources can complement traditional surveys and censuses to reduce the time and 

resources needed for data production, hence contributing to fill the SDG data gap. Examples of studies 

relying on the use of big data and geospatial information for the implementation of SAE techniques 

are widely available in the literature. In particular, Marchetti et al. (2015) discuss the challenges 

opened by the extension of SAE covariates to include variables generated by big data sources and 

provides some solutions to address them. Specifically, besides requiring the availability of advanced 

statistical and information technology knowhow, the quality of data from these “new” data sources is 

often uncertain and rarely documented in comprehensive metadata files. In this respect, attention 

should be paid to the fact that basic SAE approaches are implemented under the assumption that 

auxiliary variables are measured without error, or, in other words, that they are available for all areas 

and they come from archives covering the entire population of interest. However, data coming from 

big data sources are often affected by measurement errors (e.g. under-coverage and over-coverage) 

and bias. To mitigate these issues, various authors – such as Ybarra and Lohr (2012), and Arima et al. 

(2018) – have developed SAE approaches accounting for the presence of measurement errors in the 

covariates.
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3. Study description 
After introducing the two main classes of SAE approaches in Section 2, this section of the technical 

report describes the various phases and components of a case study implemented to explore the 

application of a FH area-level SAE approach to the production of subnational estimates of SDG 

Indicators 2.3.1 and 2.3.2 presented in Section 1. In particular, the report discusses the estimation of 

the labour productivity and average income of small-scale food producers at the level of second 

administrative divisions in Mali, considering the integration of microdata from an integrated 

household survey with area-level auxiliary information retrieved from multiple geospatial information 

systems. 

3.1 Specification of the small area estimation problem 

The production of small area estimates is normally implemented following a series of interconnected 

steps that can be repeated iteratively until the obtained result is of satisfactory quality (Figure 2).  

Figure 2: Main steps for the implementation of small area estimation 

 

Source: United Nations Department of Economic and Social Affairs (UNDESA). 2022. Producing small area 
estimation. In: UN Statistics wiki. New York, UNDESA. Cited 01 December 2022. 

https://unstats.un.org/wiki/display/SAE4SDG/Producing+SAE 

At the input (or specification) stage of any SAE problem, three main elements should be clarified: 

https://unstats.un.org/wiki/display/SAE4SDG/Producing+SAE
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 The user needs that, from a statistical stand point, determine the indicator to be estimated 

and the disaggregation dimensions to be produced; 

 The data availability including the survey to estimate the indicator and the additional sources 

providing relevant auxiliary variables; and 

 The SAE method to be implemented taking into account the identified user needs and the 

available data. Indeed, the SAE approach to be selected will highly depend on the functional 

form of the selected indicator and the level of aggregation/disaggregation at which auxiliary 

variables are available. 

 

User needs 

The objective of the presented case study was to produce estimates of SDG Indicators 2.3.1 and 2.3.2 

at the level of second administrative units in Mali. Both Indicator 2.3.1, measuring the average labour 

productivity of small-scale food producers, and Indicator 2.3.2, measuring the average income of the 

same group of farmers, are statistics expressed as population means (see expressions (1) and (2) 

reported in Section 1). With similar functional forms, standard SAE models – such as the area-level FH 

model (Section 2.1) or the unit-level nested-error linear regression model (Section 2.2) can be 

considered. 

 

Data sources 

The SAE application was implemented with microdata from the Agricultural Survey Integrated to 

Households Living Conditions 2017. The Agricultural Survey Integrated to Households Living 

Conditions is a multi-thematic cross-sectional household survey implemented under the World Bank’s 

living standard measurement study (LSMS) programme, and is based on a nationally representative 

sample of about 8 390 households and with a specific focus on agriculture. In 2017, sampling units 

were divided into two groups, one of 3 813 households that received the full questionnaire, and one 

with the remaining households that received a light version of the same questionnaire. Given that 

some of the variables needed to estimate SDG Indicators 2.3.1 and 2.3.2 were collected with the larger 

questionnaire, only households that completed the full interview could be considered for the present 

study. In addition, considering that the two indicators already have a disaggregation dimension 

embedded in their definition, i.e. the size of the farm, the sample that could be actually used to 

produce small area estimates for small-scale food producers included only 1 637 households.5 

Since 2016, Mali is divided into nine regions and one capital district (Bamako), where each region 

bears the name of its capital. All regions are further divided into 53 circles, which were the 

                                                           
5 Full description of the survey and the microdata can be found on the World Bank Microdata Catalogue (World 
Bank, 2023).  
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disaggregation domains considered for the study. Table 1 below provides a summary of the sample 

size by Malian regions and circles for Indicator 2.3.1, and the total number of out of sample circles (i.e. 

the circles with a sample size equal to 0). In particular, the region of Kidal was left out of the sample 

due to security reasons. In addition, the new region of Menaka had not been officially announced at 

the time of the survey and, for this reason, was not included in the sample.  

Similar information is provided in Table 2 for Indicator 2.3.2.  

Table 1: Sampling size of the Agricultural Survey Integrated to Households Living Conditions (2017) – 
SDG Indicator 2.3.1 

Region 
Number of 

circles 
Sample size 

by region 

Sample size of 
small-scale 

food 
producers by 

region 

Average number of 
sampled small-scale 
food producers by 

circle 

Kayes 7 431 384 55 

Koulikoro 7 381 282 40 

Sikasso 7 368 206 29 

Segou 7 436 295 42 

Mopti 8 323 221 28 

Tombouctou 5 137 126 25 

Gao 3 110 101 34 

Kidal 4 (out of 
sample) 

- - - 

Menaka 4 (out of 
sample) 

- - - 

* Bamako 1 (Bamako) 22 22 22 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 
disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

Table 2: Sampling size of the Agricultural Survey Integrated to Households Living Conditions (2017) – 
SDG Indicator 2.3.2 

Region 
Number of 

circles 
Sample size 

by region 

Sample size of 
small-scale 

food 
producers by 

region 

Average number of 
sampled small-scale 
food producers by 

circle 

Kayes 7 572 413 59 

Koulikoro 7 517 309 44 

Sikasso 7 526 229 33 

Segou 7 595 331 47 

Mopti 8 429 265 33 

Tombouctou 5 219 161 32 

Gao 3 180 141 46 

Kidal 4 (out of 
sample) 

- - - 

Menaka 4 (out of 
sample) 

- - - 

Bamako 1 (Bamako) 760 71 71 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 
disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 
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For the implementation of the discussed case study, area-level auxiliary variables retrieved from 

various geospatial information systems were considered. The initial set of potential independent 

variables was selected among the vast amount of publicly available candidates according to their 

potential capability of being good predictors of the average labour productivity and income in 

agriculture. In particular, considered covariates included in the first stage of selection were providing 

information on the following domains: 

 soil characteristics: for example, the volume fraction of coarse fragments, the nitrogen 

content, and the concentration of other soil components such as salt, silt, clary, organic 

carbon, etc.; 

 weather and climate: minimum and maximum temperature, precipitation quantity, direct 

normal irradiation, diffuse horizontal irradiation, air temperature, and vegetation indexes; 

 land cover: elevation, cover fraction of cropland, bare ground and extent of built up areas; 

 harvested area and production of major crops (cotton, rice, sorghum, and wheat); 

Table 3 presents the spatial and temporal resolution of each auxiliary variable along with the related 

source. 

Table 3: Spatial-temporal resolution and sources of geospatial area-level covariates 

Variable name 
Spatial 

resolution 
Temporal 
resolution 

Source 

Volume fraction of coarse 
fragments 

~1×1 km Static  
 
 
 

ISRIC: World Soil 
Information 

Nitrogen ~1×1 km Static 

Sand ~1×1 km Static 

Silt ~1×1 km Static 

Clay ~1×1 km Static 

Soil organic carbon ~1×1 km Static 

Minimum temperature ~4.5×4.5 km Monthly 
WorldCilm: Historical 
monthly weather data 

Maximum temperature ~4.5×4.5 km Monthly 

Precipitation ~4.5×4.5 km Monthly 

Direct normal irradiation  
(Long-term yearly average) 

~0.3×0.3 km 1994–2018  
 

Solargis Diffuse horizontal irradiation  
(Long-term yearly average) 

~0.3×0.3 km 1994–2018 

Air temperature  
(Long-term yearly average) 

~1×1 km 1999–2020 

Vegetation indexes ~5.5×5.5 km Monthly NASA EarthData 

Elevation ~1×1 km Static CGIAR CSI 

Cropland ~1×1 km Annual  
Zenodo 

 
Bare ground ~1×1 km Annual 

Built-up ~1×1 km Annual 

Harvested area  
(major crops) 

~1×1 km Annual  
MAPSPAM 

Production  
(major crops) 

~1×1 km Annual 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 
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Small area estimation method 

Considering the functional form of the two indicators monitoring Target 2.3 and the level of 

aggregation of auxiliary variables, the area-level FH model presented in Section 2.1 has been adopted 

for this case study. It should be noted that the use of unit-level SAE to disaggregate SDG indicators 

monitoring Target 2.3 may be challenging. Indeed, as introduced in Section 2.2, the implementation 

of unit-level models requires being able to identify the target population (the small-scale food 

producers) in both the survey and the considered source of unit-level auxiliary data. This means that, 

if – for example – an agricultural census is to be considered as the source of additional data, this should 

include all the variables needed to identify small-scale food producers and these variables should 

share the same definitions with those included in the survey. 

3.2 Analysis and adaptation 

The specification stage of an SAE problem is followed by the analysis and adaptation phase, which 

deals with model specification by selecting auxiliary variables, implementation of direct and model-

based estimation, and checking of model assumptions. 

Selection of auxiliary variables 

The values of considered geospatial predictors were initially available at the level of the cells of regular 

grids of different resolutions (spanning from 1×1 km to 5.5×5.5 km). Hence, being the FH approach 

based on auxiliary information  referred to the small area of interest, data needed to be pre-processed 

in order to produce aggregates (totals or means depending on the considered variable) referred to 

the irregular polygons defining Mali’s circles.6 

The initial set of potential predictors introduced in Section 3.1 was reduced adopting two stepwise 

regressions implemented using the area-level direct estimates of Indicators 2.3.1 and 2.3.2 

respectively as dependent variables and the area-level geospatial variables as covariates.7 

As results of the two step-wise regressions, only 8 auxiliary variables were retained for Indicator 2.3.1 

and 3 for Indicator 2.3.2 (see tables 4.4 and 4.5 respectively) according to the Lindeman Merenda and 

Gold (LMG) factor, which represents a measure of the relative contribution of each predictor to the 

overall R square of the model. 

                                                           
6 All data pre-processing operations were performed using the R package “raster”. More details on this package 
and related functions are provided in Annex 2. 
7 An initial set of variables was eliminated due to their high correlation – above 0.9 – with other variables 
considered important for the prediction of the parameters of interest, in order to avoid multi-collinearity issues. 
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Table 4: Results of step-wise regression for SDG Indicator 2.3.1 

 

 

 

 

 

 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

 

Table 5: Results of step-wise regression for SDG Indicator 2.3.2 

 

 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

 

It is interesting to notice that most of the covariates considered as important by the selection 

approach provide information on either the quantity produced or the area harvested of Mali’s major 

crops. Other variables retained by the stepwise procedure measure the average direct normal 

irradiation, the average volume fraction of coarse fragments, the average quantity of organic carbon 

in the soil, the average minimum temperature, and the total population. 

Estimation 

The estimation stage of most SAE problems starts from the production of small area direct estimates 

along with a measure of their precision (e.g. the CV). Direct estimates are not only assessed against 

model-based estimates produced at later stages of the process, but they also represent an important 

component of area-level estimation models such as the FH presented in expression (5). 

Going back to the notation introduced in Section 1, the two variables of interest needed for the 

estimation of Indicators 2.3.1 and 2.3.2 are the 𝑦231,𝑗 and 𝑦232,𝑗 (𝑗 = 1, … . , 𝑛) introduced in 

Variable name Unit of measure LMG (%) 

Average cotton 
production 

(Metric tonne) 24.0 

Mean direct normal 
irradiation 

(kWh/m2) 16.1 

Average wheat 
production 

(Metric tonne) 14.6 

Average rice production (Metric tonne) 11.7 

Average sorghum 
production 

(Metric tonne) 11.4 

Mean vol. fraction of 
coarse fragments 

(%) 9.8 

Mean soil organic carbon (g kg-1) 8.7 

Average rice harvested 
area 

(hectare) 3.7 

Variable name Unit of measure LMG (%) 

Minimum temperature (Celsius °C) 69.2 

Average cotton 
production 

(Metric tonne) 16.5 

Total population (Number) 14.3 



20 
 

expressions (1) and (2). Under this framework, the direct HT estimator of the two indicators for the 

𝑑 − 𝑡ℎ small area can be expressed as: 

𝑦̂̅𝑙,𝑑
𝑑𝑖𝑟 =

∑ 𝑤𝑗𝑦𝑙,𝑗𝑗∈𝑠𝑑

∑ 𝑤𝑗𝑗∈𝑠𝑑

       with 𝑙 = 231 𝑜𝑟 232 and 𝑑 = 1, … 𝐷 

Similarly, the area-level FH model introduced with expression (5) can be formulated as 

𝑦̂̅𝑙,𝑑
𝑑𝑖𝑟 = 𝑥𝑙,𝑑

𝑇 𝛽𝑑 + 𝑢𝑙,𝑑 + 𝑒𝑙,𝑑      with 𝑙 = 231 𝑜𝑟 232 and 𝑑 = 1, … 𝐷 

which leads to the following area-level EBLUP estimation : 

𝑦̂̅𝑙,𝑑
𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑙,𝑑 𝑦̂̅𝑙,𝑑

𝑑𝑖𝑟 + (1 − 𝛾𝑙,𝑑)𝑥𝑙,𝑑
𝑇 𝛽̂𝑙   with 𝑙 = 231 𝑜𝑟 232 and 𝑑 = 1, … 𝐷 

Where 𝛽̂𝑙 is the weighted least squares estimator of the regression parameters and 𝛾𝑙,𝑑 is the 

shrinkage factor for estimator (𝑙 = 231 𝑜𝑟 232).  

Assessment of estimates accuracy and model assumptions 

As introduced in Section 2, the basic FH model assumes that the error term 𝑒𝑙,𝑑 and the random effect 

𝑢𝑙,𝑑 follow a normal distribution with mean 0 and variances 𝜎𝑒𝑙,𝑑
2  and 𝜎𝑢𝑙

2  respectively. These 

assumption will have to be validated when assessing the model output, by means of quantile-quantile 

(QQ) plots or normality tests (e.g. the Shapiro-Wilk test). 

In addition, the FH model assumes that the sampling variances 𝜎𝑒𝑙,𝑑
2  (𝑑 = 1, … , 𝐷) are known. 

However, in practical applications these are unknown quantities that need to be estimated by means 

of direct estimators. Due to the limited sample size of small areas, the variance estimates might need 

to be stabilized though suitable smoothing techniques.  

In this particular case study we adopted the smoothing approach based on the generalized variance 

functions. First of all, given that the parameter of interest is a ratio, a linearization approach of the 

variance is adopted (Wolter, 2007). Indicating with R̂ =  
×̂

Ŷ
 the ratio estimator, where X̂ and Ŷ denote 

estimators of X and Y, the Taylor series estimator of the variance of R̂ is: 

𝑣(𝑅̂) =  
1

𝑌̂2
[𝑣(𝑋̂) + 𝑅̂2𝑣(𝑌̂) − 2𝑅̂𝜌̂𝑋𝑌√𝑣(𝑋̂)√𝑣(𝑌̂)] 

where 𝑣(𝑋̂), 𝑣(𝑌̂) and 𝜌̂𝑋𝑌 denote estimators of the variance of 𝑋̂, the variance of 𝑌̂ and the linear 

correlation between 𝑋̂ and 𝑌̂ respectively.  

The smoothed variance of 𝑅̂ can be obtained by substituting to 𝑣(𝑋̂), 𝑣(𝑌̂) their smoothed 

versions 𝑣̃(𝑋̂), 𝑣̃(𝑌̂): 
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𝜎̃𝑒𝑎
2 = 𝑣̃(𝑅̂) =  

1

𝑌̂2
[𝑣̃(𝑋̂) + 𝑅̂2𝑣̃(𝑌̂) − 2𝑅̂𝜌̂𝑋𝑌√𝑣̃(𝑋̂)√𝑣̃(𝑌̂)] 

The smoothing models chosen for v(X̂) and v(Ŷ) are the following: 

log (𝑣(𝑋̂)) = α + βlog(𝑋̂)  ,  log (𝑣(𝑌̂)) = α + βlog(𝑌̂)  

The smoothed variances obtained σ̃𝑒𝑎
2  were bias-corrected by applying a ratio adjustment of a factor 

equal to ∆=
∑ σ̂𝑒𝑎

2

∑ σ̃𝑒𝑎
2  avoiding in this way overestimation or underestimation of the direct variances σ̂𝑒𝑎

2  

(Beaumont and Bocci, 2016).

4. Estimation results 
The main results of the study presented in Section 3 are here discussed by comparing the performance 

of direct and model-based estimators, and producing evidence on the validity of the model. The 

present section is complemented by Annex 1, displaying direct and model-based small area estimates 

of SDG Indicators 2.3.1 and 2.3.2 in Mali’s circles along with the associated measures of reliability. In 

addition, Annex 2 provides the main R packages used for the analysis. For a step-by-step tutorial on 

the implementation of the case study, the authors refer to the recordings of a virtual training on data 

disaggregation and small area estimation for SDG indicators organized by the Office of the Chief 

Statistician of FAO in November 2022.8 

Figure 3 and 4 respectively present the maps of direct and model-based estimates of Indicators 2.3.1 

and 2.3.2 by circle. Both maps show how – using the FH – it is possible to produce predictions in out 

of sample domains.9 Each figure also presents the distribution of direct and indirect estimates by 

means of boxplots. In this respect, the boxplots provide evidence of the fact that the implementation 

of model-based SAE techniques results in a reduction of the variability between estimates referred to 

different small areas or, in other terms, a smoothing of the variability of the phenomena between 

small areas.  

                                                           
8 See the recordings of Day 3 of the Virtual Training on Data Disaggregation and Small Area Estimation for SDG 
Indicators that was organized by FAO, from 22 to 25 November 2022 (FAO, 2023).  
9 Out of sample areas are colored with grey in the map of direct estimates and have ticker borders in the map 
of model-based estimates. 
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Figure 3: Direct and model-based estimates of SDG Indicator 2.3.1 by circle 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 
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Figure 4: Direct and model-based estimates of SDG Indicator 2.3.2 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

 

Figure 3 and 4 provide complementary representations of estimates reliability by comparing the CV 

of direct and model-based estimates. The two boxplots in the top-left quadrant of both figures display 

the distribution of CVs of direct and model-based estimates and highlight the higher accuracy of small 

area estimates compared to their direct counterpart. Indeed, for what concerns Indicator 2.3.1, the 

CV of model-based estimates is below 0.2 in the 75 percent of the cases, while the same threshold is 

surpassed by more than the 50 percent of direct estimates. Similarly, the CV of small area estimates 
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of Indicator 2.3.2 is below 0.3 in the 75 percent of the cases, while most direct estimates have a CV 

above this threshold.  

The plot in the top-right corner provides similar evidence, with direct and indirect estimates plotted 

by increasing values of their CV. The picture gives a visual indication of the fact that the CV of small 

area estimates falls always below the same variability measure referred to direct estimates, except in 

the very few cases where the domain direct estimates were already showing a high accuracy. The two 

graphs presented in the second row of Figure 5 and Figure 6 allow assessing the linear relationship 

between direct and indirect estimates. Generally speaking, and especially in correspondence of 

domains with higher sampling size, direct and indirect estimates are expected to be correlated. In 

other terms, it is highly desirable that the two approaches produce similar estimation results. In the 

considered case, the graphs illustrate a strong linear relationship between estimates produced with 

the two different approaches, with a correlation equal to 0.89 and 0.97 for Indicator 2.3.1 and 2.3.2 

respectively. 
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Figure 5: Assessment of direct and model-based estimates – SDG Indicator 2.3.1 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 
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Figure 6: Assessment of direct and model-based estimates – SDG Indicator 2.3.2 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

 

After assessing estimates reliability, an important component of SAE is the validation of the 

fundamental assumptions underlying the model, i.e. the normality of residuals and random effects. 

To that purpose, Figure 7 and Figure 8 present the QQ plots of both the error term and the random 

effects, which does not provide any significant proof of deviation from the normality assumption. This 

was also confirmed also by the Shapiro-Wilk test, which resulted in p-values above 0.05 for both the 

residuals and the random effects, leading to accept the null hypothesis of normality. 
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Figure 7: Quantile-quantile plots of residuals and random effects – SDG Indicator 2.3.1 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

 

Figure 8: Quantile-quantile plots of residuals and random effects – SDG Indicator 2.3.2 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 
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5. Conclusions 
 

Monitoring the implementation of the 2030 Agenda for Sustainable Development and its overarching 

pledge to leave no one behind calls for more disaggregated data and SDG indicators than what is 

currently available in most countries. In this context, sample surveys are the preferred data source for 

about the 30 percent of indicators in the SDG monitoring framework and can offer valuable 

information to measure the social, economic and environmental dimensions of sustainable 

development. However, traditional household and agricultural surveys are usually characterized by 

sampling sizes that are either too small to produce precise estimates, or that do not cover all 

disaggregation domains of interest. Hence, indirect estimation approaches such as SAE techniques can 

represent a valuable tool for NSOs and international organizations to produce timely and granular 

disaggregated estimates of SDG indicators, without having to increase the survey sampling size. In 

particular, with the proliferation of new data sources such as geospatial and big data information 

systems, SAE models can be implemented by combining survey data with a vast amount of auxiliary 

information available at no or limited cost and at high frequency. In this respect, the body of literature 

and the number of case studies on SAE techniques applied to SDG indicators can still be expanded. 

After a brief review of the methodology behind the computation of SDG Indicators 2.3.1 and 2.3.2 and 

the main SAE approaches available in the literature, this technical report presents a case study based 

on the FH area-level SAE model to produce subnational estimates of SDG indicators monitoring Target 

2.3 at the level of Mali’s circles . The case study considers the integration of survey data with area-

level auxiliary information retrieved from multiple geospatial information systems. It shows how the 

model-based estimates of Indicators 2.3.1 and 2.3.2 in Mali’s circles reach greater precision compared 

to direct estimates at the same level of disaggregation. In addition, adopting the considered indirect 

estimation approach, estimates for out of sample areas can also be produced. 

The FH  area-level model was selected in place of unit-level methods in order to provide a simple 

example of SAE based on SDG indicators related to the agricultural sector development, only requiring 

access to area-level direct estimates and auxiliary information. In addition, using an indirect estimator 

– such as the area-level EBLUP – expressed as a linear combination of area-level direct and synthetic 

estimates, the SAE  approach can intuitively be interpreted as a  way of improving direct estimates 

through a synthetic component based on external information correlated with the phenomenon of 

interest.
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Annexes 

Annex 1: Small area estimation results 
 

Table A.1.1: Small area estimates for Indicator 2.3.1 

Domain Direct 
estimates 

MSE direct 
estimates 

CV direct 
estimates 

(%) 

FH 
estimates 

MSE FH 
estimates 

CV FH 
estimates 

(%) 

Kayes 879.25 52 525.79 26.07 916.28 4 9362.21 24.25 

Bafoulabe 2 722.70 528 121.06 26.69 2 105.13 23 0635.73 22.81 

Diéma 1 803.64 181 418.22 23.62 1 782.85 131 652.75 20.35 

Kéniéba 1 987.45 162 480.24 20.28 2 194.30 138 108.17 16.94 

Kita 3 174.13 1 049 586.32 32.28 2 290.58 280 169.35 23.11 

Nioro 1 275.43 64 736.56 19.95 1 357.82 58 633.06 17.83 

Yélimané 927.54 92 773.91 32.84 1 018.06 80 504.19 27.87 

Koulikoro 2 247.26 100 429.23 14.10 2 211.84 82 113.23 12.96 

Banamba 3 235.60 1 654 409.56 39.75 2 535.67 279 047.59 20.83 

Dioila 2 404.33 424 290.69 27.09 2 520.92 214 831.38 18.39 

Kangaba 2 255.09 128 281.46 15.88 2 494.96 109 626.55 13.27 

Kati 2 182.93 308 577.72 25.45 2 371.24 176 672.90 17.73 

Kolokani 3 292.31 352 179.23 18.03 2 588.48 185 101.39 16.62 

Nara 1 638.25 343 174.52 35.76 1 897.77 189 090.28 22.91 

Sikasso 3 991.86 899 223.46 23.76 3 286.56 299 263.88 16.65 

Bougouni 2 743.19 414 279.55 23.46 3 182.48 231 932.27 15.13 

Kadiolo 2 685.79 597 819.82 28.79 2 304.40 293 642.58 23.52 

Kolondieba 3 822.95 871 867.45 24.42 3 183.60 328 096.76 17.99 

Koutiala 5 529.24 2 746 170.85 29.97 5 286.18 794 217.75 16.86 

Yanfolila 4 580.34 1 556 252.63 27.24 3 074.41 331 240.05 18.72 

Yorosso 3 632.50 682 022.92 22.73 3 482.54 265 936.48 14.81 

Ségou 5 154.36 1 311 467.91 22.22 3 646.34 278 586.79 14.48 

Baraouéli 2 354.04 186 814.54 18.36 2 696.25 129 402.63 13.34 

Bla 3 970.85 1 168 115.65 27.22 3 742.05 303 476.57 14.72 

Macina 3 889.31 1 086 334.99 26.80 3 980.23 302 544.26 13.82 

Niono 6 749.44 835 636.73 13.54 6 175.95 653 657.28 13.09 

San 2 625.37 368 601.69 23.13 3 326.38 223 720.20 14.22 

Tominian 2 500.89 720 785.39 33.95 2 719.89 239 764.38 18.00 

Mopti 3 137.34 538 398.40 23.39 3 320.67 397 949.76 19.00 

Bandiagara 1 851.83 96 949.19 16.81 2 047.44 91 960.26 14.81 

Bankass 5 225.01 968 579.80 18.84 3 094.39 265 334.09 16.65 

Djenné 3 143.19 1 263 571.44 35.76 3 176.30 309 613.19 17.52 

Douentza 2 834.63 290 544.50 19.02 2 821.84 179 433.65 15.01 

Koro 2 429.92 424 038.14 26.80 2 561.20 217 875.49 18.22 

Ténenkou 5 310.81 1 591 321.05 23.75 3 457.43 335 049.91 16.74 

Youwarou 5 339.18 2 534 326.10 29.82 3 391.29 384 643.21 18.29 

Tombouctou 6 353.80 3 236 874.08 28.32 5 587.84 854 164.54 16.54 
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Domain Direct 
estimates 

MSE direct 
estimates 

CV direct 
estimates 

(%) 

FH 
estimates 

MSE FH 
estimates 

CV FH 
estimates 

(%) 

Diré 4 259.60 212 647.17 10.83 3 987.93 173 318.61 10.44 

Goundam 2 664.81 365 218.19 22.68 2 993.96 310 487.02 18.61 

Gourma-Rharous 2 147.94 355 846.19 27.77 2 252.71 223 577.59 20.99 

Niafunké 3 412.11 335 054.40 16.96 3 596.81 233 457.27 13.43 

Gao 1 277.29 96 537.53 24.33 1 442.53 84 414.52 20.14 

Ansongo 3 106.52 259 545.30 16.40 2 716.57 163 420.34 14.88 

Bourem 1 548.99 66 653.68 16.67 1  473.40 65 667.05 17.39 

Kidal 
   

4 607.21 969 029.27 21.37 

Abeibara 
   

6 821.14 2 288 
037.18 

22.18 

Tessalit 
   

4 946.98 1 200 
921.75 

22.15 

Tin-Essako 
   

5 215.33 1 266 
131.64 

21.58 

Bamako 3 283.24 2 735 010.33 50.37 2 244.01 299 783.86 24.40 

Ménaka    2 880.45 410 563.84 22.24 

Anderamboukane    2 911.18 406 467.37 21.90 

Inekar    3 913.16 638 171.44 20.41 

Tidermene    4 032.51 678 249.17 20.42 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 

 

Table A.1.2: Small area estimates for Indicator 2.3.2 

Domain 
Direct 

estimates 

MSE 
direct 

estimates 

CV direct 
estimates 

FH 
estimates 

MSE FH 
estimates 

CV FH 
estimates 

Kayes 472.93 2 4343.90 32.99 491.24 16 870.37 26.44 

Bafoulabe 1 459.02 7 3130.86 18.53 1 306.32 48 985.30 16.94 

Diéma 550.15 4 4084.29 38.16 832.96 51 701.41 27.30 

Kéniéba 941.93 2 1761.07 15.66 954.94 19 568.20 14.65 

Kita 1 079.49 110 390.07 30.78 1 149.48 78 476.24 24.37 

Nioro 323.41 14 811.69 37.63 556.83 23 071.93 27.28 

Yélimané 234.54 12 437.98 47.55 427.37 18284.94 31.64 

Koulikoro 2 032.36 219 922.43 23.07 2 046.77 170 801.25 20.19 

Banamba 2 343.43 381 386.89 26.35 2 420.38 294 550.94 22.42 

Dioila 2 490.22 475 867.38 27.70 2 053.95 219 249.06 22.80 

Kangaba 1 997.15 290 805.17 27.00 2 018.61 209 907.92 22.70 

Kati 858.17 98 937.78 36.65 941.23 78 351.42 29.74 

Kolokani 2 258.88 203 174.47 19.95 2 175.14 153 865.52 18.03 

Nara 2 988.76 907 199.98 31.87 2 249.58 310 606.33 24.77 
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Domain 
Direct 

estimates 

MSE 
direct 

estimates 

CV direct 
estimates 

FH 
estimates 

MSE FH 
estimates 

CV FH 
estimates 

Sikasso 1 161.56 126 366.55 30.60 1 161.69 83 685.25 24.90 

Bougouni 1385.27 105 824.70 23.48 1 468.65 91 160.15 20.56 

Kadiolo 563.64 47 902.64 38.83 851.73 57 024.62 28.04 

Kolondieba 2 169.39 207 672.49 21.01 2 021.37 146 490.68 18.93 

Koutiala 1 560.56 285 312.79 34.23 1 762.21 271 821.77 29.59 

Yanfolila 1 692.69 273 493.61 30.90 1 827.88 202 075.99 24.59 

Yorosso 2 389.03 626 358.81 33.13 1 926.56 247 751.46 25.84 

Ségou 1 215.53 79 002.36 23.12 1 302.43 69 634.36 20.26 

Baraouéli 2 057.48 124 702.70 17.16 2 017.03 102 379.10 15.86 

Bla 1 129.04 106 581.61 28.92 1 364.33 103 268.28 23.55 

Macina 3 258.70 450 138.01 20.59 2 960.97 300 609.69 18.52 

Niono 879.75 38 235.09 22.23 979.61 36 245.05 19.43 

San 1 236.31 40 672.24 16.31 1 322.56 40 578.22 15.23 

Tominian 1 467.44 88 116.00 20.23 1 464.91 70 184.08 18.08 

Mopti 1 120.48 75 428.29 24.51 1 135.31 56 434.17 20.92 

Bandiagara 710.83 33 965.77 25.93 931.38 41 554.70 21.89 

Bankass 1 796.73 90 669.08 16.76 1 699.49 69 542.77 15.52 

Djenné 1 187.30 121 712.27 29.38 1 349.65 102 411.02 23.71 

Douentza 1 906.06 120 759.89 18.23 1 622.94 73 467.85 16.70 

Koro 785.10 45 187.84 27.08 878.23 38 721.03 22.41 

Ténenkou 1 860.58 274 561.45 28.16 1 641.76 142 819.29 23.02 

Youwarou 863.00 94 416.81 35.61 946.07 62 938.62 26.52 

Tombouctou 605.84 49 764.32 36.82 846.58 51 685.38 26.85 

Diré 836.94 72 553.08 32.18 933.78 54 704.84 25.05 

Goundam 1 064.83 144 952.02 35.75 1 090.64 83 376.15 26.48 

Gourma-Rharous 1 610.39 115 448.68 21.10 1 348.43 64 919.01 18.90 

Niafunké 507.50 8 500.73 18.17 597.18 9 835.36 16.61 

Gao 441.17 30 042.63 39.29 562.94 25 537.35 28.39 

Ansongo 917.92 100 583.68 34.55 857.53 51 291.79 26.41 

Bourem 676.95 83 618.27 42.72 728.82 46 210.89 29.50 

Kidal 
   

967.36 135 221.52 38.01 

Abeibara 
   

2 325.77 854 680.31 39.75 

Tessalit 
   

1 190.85 200 708.47 37.62 

Tin-Essako 
   

1 396.80 275 956.15 37.61 

Bamako 562.12 64 399.12 45.14 522.29 41 906.64 39.20 

Ménaka    625.26 66 143.55 41.13 

Anderamboukane    602.84 62 715.76 41.54 

Inekar    791.48 96 786.01 39.31 

Tidermene    808.70 100 345.02 39.17 

 

Source: FAO. 2023. Integrating surveys with geospatial data through small area estimation to 

disaggregate SDG indicators at subnational level. Case study on SDG Indicators 2.3.1 and 2.3.2. 

Rome. 
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Annex 2: R packages used for the case study 
 

A2.1 R packages to treat geospatial variables 

Geospatial information and remote sensing data are normally referred to spatially continuous 

phenomena typically represented through the so-called raster data model. This model allows 

partitioning the world into a grid of equally sized rectangles, referred to as cells or pixels. The open 

software R includes several packages allowing to read and process raster data. In particular, the 

present study relied on the raster package (Harmening et al., 2022), which provides functions to 

implement the following steps: 

 Crop and mask to select the portion of raster data that falls within the region under study (i.e. 

Mali), using the functions mask() and crop(), respectively; 

 Identify the cells falling in each circle using the function cellnumbers() from package 

tabularaster (Sumner, 2022) and then extract and aggregate the values associated to the cells 

by circle using the function extract() and groupby() followed by summarise(), these last 

belonging to the dplyr package (Cran.r project, 2022).  

A2.2 R packages to select auxiliary variables 

The selection of auxiliary variables to be included in the SAE model has been performed using a 

stepwise selection approach. This method can be implemented using the step function included in the 

R package stats (ETHzurich, 2022), which, by default, allows selecting the best model based on the 

Akaike Information criterion (AIC). Among the various arguments to be specified in the function step(), 

the “object” argument represents the model to be used by the stepwise selection approach as initial 

model. This object can be defined either with the function lm, for linear models, and glm, for 

generalized linear models. 

A2.3 R packages to produce direct estimates 

In order to produce direct estimates, one of the prerequisite actions is the selection of a suitable 

software package, allowing to consider complex sampling designs (such as those typically adopted in 

household and agricultural surveys) and producing estimates along with related accuracy measures. 

In this framework, a good option is provided by the R package Regenesees – R evolved generalized 

software for sampling estimates and errors in surveys – developed by the Italian National Statistical 

Institute. This package allows implementing design-based and model assisted analysis of complex 

surveys, and achieves a dramatic reduction in user workload for the production of estimates and error 

measures. 

The package can be downloaded from the website of Italian National Institute of Statistics (Istat, 2023) 

along with a graphic user interface – ReGenesses.GUI – that enhance the usability of the package for 

non-expert R programmers. 

Being Indicators 2.3.1 and 2.3.2 obtained as realization of ratio-type estimators, specific functions 

included in the ReGenesees package should be used. In particular, the function e.svydesign() has been 

used to specify the survey sampling design to be considered during the estimation process. After this 

step, the function svystatR() has been used to compute estimates, standard errors and confidence 

intervals for ratio-type estimators, such as Indicators 2.3.1 and 2.3.2. 
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A2.4 R packages to produce area-level SAE 

The software package chosen to estimate the parameters of the FH model was the R package emdi 

(Harmening et al., 2022). The function fh() of this package allows producing the area-level EBLUP 

estimates and their mean squared error. Additionally, the package provides function to implement 

various extension of the basic FH. 
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