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Whole genome sequencing and related tools now offer opportunities to 
evaluate the genetic diversity of livestock populations and individuals with 
a much higher precision than ever before, at a fraction of previous costs. 
Applying genomics is technically demanding, however. This publication 
constitutes a practical tool to guide scientists and other stakeholders in their 
activities of genomic characterization of animal genetic resources.

This document is part of a series of guidelines published by FAO to support 
implementation of the Global Plan of Action for Animal Genetic Resources, 
which was adopted in 2007 and remains the internationally agreed framework 
for the management of biodiversity in the livestock sector. 

These guidelines on Genomic characterization of animal genetic resources 
update the previous edition of guidelines on Molecular genetic characterization 
of animal genetic resources, published in 2011. The guidelines describe the 
key processes of undertaking a study to characterize one or more livestock 
populations on the basis of their DNA sequences. The publication opens by 
reviewing the rationale for characterization of animal genetic resources 
and summarizing the history and prospects. The basics of carrying out a 
genomic diversity study are then addressed, followed by explanations of the 
main approaches for assessing genomes (i.e. whole genome sequencing and 
genotyping of single nucleotide polymorphism markers). Finally, the most 
important applications of genomics for assessing the genetic variation within 
and across populations are described. These guidelines are intended to provide 
countries with another tool for sustainable management and conservation of 
their animal genetic resources.
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Foreword

The diversity of animal genetic resources for food and agriculture (AnGR) is an international 
public good that must be managed properly to help ensure the sustainable contribution of 
livestock to world food security and nutrition. For that reason, FAO Members developed 
the Global Plan of Action for Animal Genetic Resources,1 (Global Plan of Action) which was 
adopted in 2007 and reaffirmed in 2017.

The Global Plan of Action contains 23 Strategic Priorities assigned to four Strategic 
Priority Areas. The first Strategic Priority Area is the characterization, inventory and monitor-
ing of trends and associated risks of AnGR; which recognizes that management of AnGR will 
be successful only if decisions are made on the basis of sufficient and accurate information 
about the AnGR subject to management. Among this information are details about the 
genetic constitution of the breeds, which can be measured on the molecular level by char-
acterization of a representative sample of animals. To assist countries and their scientists in 
this task, in 2011 FAO published guidelines on Molecular genetic characterization of animal 
genetic resources2 and distributed them widely.

Molecular biotechnologies have developed rapidly and substantially since the release of 
these previous guidelines. The livestock sector has been an active participant in the so-called 
“genomic revolution.” Advancements in the sequencing of genomes and related geno-
typing methods have created opportunities for gathering much more information on the 
molecular level than ever possible, at a faster rate, and for exponentially decreased costs. 

Scientists and other livestock stakeholders in countries with highly developed economies 
have been among the main beneficiaries of this revolution. However, the greatly decreased 
costs of genomic applications have also created opportunities in countries with developing 
and transitional economies. In many instances, the lack of awareness of these opportunities 
and in the technical capacity for the full application of genomic tools may represent a greater 
obstacle to their utilization than the expenses involved.

The development of this document and the subsequent application of the information 
contained herein may help to bridge this gap, bringing new opportunities to light and 
transferring knowledge that can be used to increase the genetic characterization of AnGR 
and subsequently improve the sustainable use and conservation of livestock genetic diversity.

The document first presents the rationale for characterization of AnGR, including a look 
at the history of molecular characterization and prospects for the future. The document 
then presents the basics of genomic characterization studies, reviewing the steps from 
initial planning, to sample collection, to laboratory and data analysis, to dissemination and 
utilization of the information in AnGR management. Next is a review of the main genom-
ic tools, including DNA sequencing and genotyping of single nucleotide polymorphisms 

1	 FAO. 2007. Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration. Rome. 

www.fao.org/3/a1404e/a1404e.pdf
2	 FAO. 2011. Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and  

Health Guidelines. No. 9. Rome. www.fao.org/3/i2413e/i2413e00.htm
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(SNP), and of the statistical and computational methods to prepare the resulting data for 
analysis and application. These applications are then described in the subsequent section. 
Assessment of genetic variation within populations is first introduced and then expanded 
to making comparisons across populations. The approaches to use data to draw inferences 
about population histories and development are described. This section continues with a 
discussion of how genomic data can be integrated with information about phenotypes to 
obtain more knowledge about the AnGR being studied and then provides examples on how 
this knowledge can be and has been applied. The document wraps up with conclusions and 
recommendations based on the key points from the various sections. Several appendices 
provide a greater level of detail on specific issues.

The preparation of this document represents a contribution to Strategic Priority 2 of the 
Global Plan of Action, which addresses the need to develop international technical standards 
and protocols for characterization of AnGR. The document was reviewed by an independent 
group of experts and by Members of the Commission on Genetic Resources for Food and 
Agriculture, as well as its Intergovernmental Technical Working Group for Animal Genetic 
Resources.

The document aims to present the state of the art in genomic characterization of 
AnGR, but the technology will continue to advance. It will thus be refined and updated 
in accordance with new technological developments and as experience with in the field is 
accumulated. The assistance of the National Coordinators for the Management of Animal 
Genetic Resources and their country networks will be particularly important to this process 
of revision. 
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Goal and structure

This document has been developed to update and largely supercede the content of the 
previous FAO Guidelines on Molecular characterization of animal genetic resources.5 In par-
ticular, the content of the previous guidelines was used as a template for the preparation of 
Sections 1 and 2, as well as for several of the appendices. As with the previous guidelines, 
the broad objective of this document is to provide guidance on performing molecular char-
acterization studies on AnGR by employing the most advanced technologies that are feasible 
considering the given context.

The document generally targets the scientists who are considering to undertake a molec-
ular genetic characterization study of their local AnGR. However, all or parts may be of 
interest to other stakeholders. For instance, the discussion of rationale for characterization 
studies may be important for policymakers or potential donors of support of such studies.

The document consists of five main sections plus appendices.
Section 1 begins by outlining the rationale for characterization of AnGR in general, by 

pointing out that information about an animal population is necessary for its proper man-
agement and noting that complete information is still lacking for many AnGR. Molecular 
characterization provides more precise information about the genetic diversity within and 
among breeds than is available by other forms of characterization. The section also reviews 
the history of molecular genetic characterization and previews the future prospects offered 
by the use of genomics.

Section 2 outlines the complete process of genomic characterization. It starts by high-
lighting the importance of preparation, describing all of the planning that should be done to 
ensure a successful study. This is followed by a summary of activities to be taken in the field, 
in the laboratory, and then once the data are obtained. Utilization of the results to improve 
the management of the characterized population is emphasized.

Section 3 describes the main methods for transforming biological samples into genom-
ic data. These methods include genotyping of SNPs and whole genome sequencing. The 
concept of data imputation is introduced as a method to increase the amount of genomic 
information per sample. The section also lays out the step-by-step process of editing raw 
data to obtain a working dataset to which statistical analyses can be applied.

Section 4 explains the most common applications for the use of genomic data for char-
acterization of populations. These range from assessment of the genetic variation within a 
single population to analysis of the genetic similarity and differences among members of a 
group of breeds. The section explains how inferences about the history of a breed can be 
drawn exclusively from the genotypes of currently living animals and refers readers to the 
most appropriate software for each application. It also includes subsections on selection 
signatures, genome wide association studies and landscape genomics that explain how 
complementing genomic data with phenotypes and/or geographical information can create 

5	 FAO. 2011. Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and  

Health Guidelines. No. 9. Rome. www.fao.org/3/i2413e/i2413e00.htm
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new knowledge about the genetic basis for traits, including adaptation. The section con-
cludes with a brief introduction of how genomics can contribute to the sustainable use and/
or conservation of AnGR and provides some case studies.

Section 5 contains the main conclusions and recommendations. It is a summary of the 
main take-home messages from the preceding sections. Finally, nine appendices are included 
that provide in-depth information to complement the main sections.
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SECTION 1

Introduction

Johannes A Lenstra, Utrecht University, the Netherlands

RATIONALE FOR CHARACTERIZATION OF ANIMAL GENETIC RESOURCES
Domestic animal diversity is an important component of global biodiversity. About 40 species 
of domestic animals and poultry contribute to meeting the needs of humankind, providing 
meat, fibre, milk, eggs, draught animal power, sport and recreation, skins and manure, and 
are an essential component of many mixed farming systems. Within these species, around 
8 800 breeds and strains constitute the animal genetic resources (AnGR) that are of crucial 
significance for food and agriculture (FAO, 2021).

The present pattern of diversity of AnGR is the result of a long and complicated his-
tory that started with animal domestication. Depending upon the species, domestication 
occurred 10  000 to 1  000 years ago. Since then, domestic livestock have spread with 
human migration and trading to all inhabited continents. Local adaptation, artificial 
selection, mutation and genetic drift turned the genetic diversity captured with domes-
tication into a vast array of differences in appearance, physiology and agricultural traits. 
During recent centuries, this differentiation has been accentuated by the emergence and 
development of breeds – more or less isolated populations that were subject to systematic 
selection. This development has been most pronounced in the temperate zones where the 
demands of food supply led to a rationalization of agriculture. The last 50 years have seen 
the global spread of a few highly developed breeds, most of which originated in Europe.  
A well-known example is the high-yielding Holstein-Friesian breed of dairy cattle, which has 
become by far the most widely dispersed cattle breed in the world.

The global diffusion of these specialized breeds is endangering or even risking the 
extinction of many well-adapted local breeds/populations. This trend is occurring in both 
moderately to highly intensive production environments and in marginal areas (Godber and 
Wall, 2014; Sponenberg et al., 2018), where local husbandry practices are being aban-
doned (Köhler-Rollefson, Rathore and Mathias, 2009). Local breeds are usually much less 
productive than the highly developed international transboundary breeds when raised in 
optimal conditions, but are adapted to the local climate (Mirkena et al., 2010) and do per-
form in a natural environment without intensive management. Indiscriminate cross-breed-
ing and introduction or increased use of the specialized exotic breeds have been reported 
as the two most important causes of genetic erosion at global level (FAO, 2015).

This erosion of diversity of AnGR has become a major concern (Hodges, 2006; FAO, 
2007a; Bruford et al., 2015). The negative consequences of genetic erosion and inbreeding 
depression have been amply documented and may be manifested by loss of viability, fertility 
and disease resistance, and the frequent occurrence of recessive genetic diseases (FAO, 
2007b; Taberlet et al., 2008; Howard et al., 2017). According to the report on the Status 
and trends of animal genetic resources – 2020 (FAO, 2021), approximately 7 percent of 
reported livestock breeds have become extinct, and more than 25 percent are considered 
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to be at risk of extinction. Moreover, the situation is presently unknown for more than  
50 percent of breeds, most of which are reared in developing countries. 

Several recent developments have strengthened the interest in local breeds. First, we 
now realize that their local adaptation will become even more essential in view of the 
ongoing and escalating climate change (Hoffmann et al., 2010). Second, there is a growing 
interest in the restoration of ecosystems (UN, 2020), including “rewilding” of abandoned 
agricultural areas, in which domestic ungulates are kept under feral or semi-feral conditions 
and occupy the niche of mega-herbivores (Carey, 2016). For this purpose, only animals that 
are adapted to extensive management are suitable. Third, the global COVID-19 pandemic 
has increased the awareness about zoonotic diseases, and the potential benefits (Liverani 
et al., 2013) of a high biodiversity of wildlife, livestock and production systems (Simianer 
and Reimer, 2021).

FAO has a history of working with countries and other stakeholders to improve the pro-
ductivity of livestock and the livelihoods of their citizens while maintaining AnGR diversity 
(FAO, 1990a; 1990b). Specific priorities for AnGR management are set out in the Global 
Plan of Action for Animal Genetic Resources (Global Plan of Action) (FAO, 2007a), the 
internationally agreed policy framework for management of AnGR.

One of the Strategic Priority Areas of the Global Plan of Action is the characterization, 
inventory and monitoring of trends in AnGR diversity. In brief, this Strategic Priority Area 
(SPA) addresses the gathering of information to increase the knowledge about AnGR. 
Knowledge is necessary to properly assess the value of breeds and to guide decision mak-
ing in livestock development and breeding programmes. Assessments of the capacity to 
manage AnGR have revealed that a lack of knowledge is a major constraint (for example, 
FAO, 2007b; 2015)

In this document, the words “breed” and “population” will be used almost inter-
changeably. Technically, “population” is a more general term and includes both well 
defined “breeds” and groups of animals that have not yet been defined as a breed. The 
breed is the most common operational unit in the conservation of genetic resources. 
However, the biological breed concept to describe groups of animals having particular 
genetic characteristics is not always applicable. Many breeds originating from industrial-
ized countries are well-defined and phenotypically distinct, and have been largely isolated 
genetically throughout the course of their development. In contrast, a significant propor-
tion of other breeds, especially those in Asia and Africa, correspond to local populations 
without structured breeding programmes, and therefore differ only gradually according to 
geographical separation. In addition, breeds with different names may have a recent com-
mon origin (Felius et al., 2011), and crossbreeding has been common since the invention 
of breeds in the eighteenth century.

It is often argued that breeds, by being associated with a group of people, is a social 
construct rather than a biological concept (“A breed is a breed if enough people say it is,” 
K. Hammond as cited by Oldenbroek and Van der Waaij, 2015). On the other hand, recent 
developments in biotechnologies have greatly increased the power of molecular analyses 
to discern the genetic makeup of organisms and identify differences and similarities among 
populations. Molecular genetic analysis can now complement phenotypic characterization 
and indigenous knowledge to help identify the breeds or groups of breeds that have 
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retained their uniqueness, and to gather information to help guide their future manage-
ment. Genomic characterization is a useful tool regardless of the precision with which a 
“breed” is defined.

MOLECULAR CHARACTERIZATION – HISTORY AND PROSPECTS
Scientists began use molecular data for livestock in the early 1990s, and since then, these 
data have become continually more relevant for the characterization of genetic diversity 
(Groeneveld et al., 2010; Bruford et al., 2015). In 1993, an FAO working group proposed a 
global programme for characterization of AnGR, including molecular genetic characteriza-
tion, and formulated the Secondary guidelines: measurement of domestic animal diversity 
(MoDAD) (FAO, 1993) with recommendations for the molecular analysis of domestic animal 
diversity on a global scale.

The FAO MoDAD report succeeded in creating awareness of the need to monitor AnGR 
diversity. In addition, the proposal of the program helped motivate many nationally funded 
research projects and larger regional and international projects supported by organizations 
such as the European Commission, the Nordic Council of Ministers, the International 
Atomic Energy Agency (IAEA), the International Livestock Research Institute (ILRI) and the 
World Bank.

Scientists in many countries have undertaken studies to characterize locally available 
breeds, while large-scale international efforts on breed characterization have built com-
prehensive molecular datasets for most livestock species. The study of genetic diversity of 
livestock at the molecular level has developed into an active area of research that frequently 
contributes to the capacity building of young scientists, and receives considerable attention 
in scientific press and at the conferences of organizations such as the International Society 
for Animal Genetics (ISAG) and the European Federation of Animal Science (EAAP). 

The first MoDAD guidelines were followed-up in 2011 by the FAO report Molecular 
genetic characterization of animal genetic resources (FAO, 2011). At that time, the state-
of-the-art technology was still largely based on the use of microsatellites as a genetic 
marker, which, after 1990, had revolutionized the science of molecular genetics. However, 
this category of markers has two major disadvantages for studying genetic diversity. First, 
allele calling is difficult to reproduce across laboratories. Second, in spite of the efforts of 
FAO and ISAG towards standardization, many laboratories continued to use private panels 
of genetic markers, which precluded the joining of datasets and seriously decreased the 
impact of such studies.

Starting about 10 to 15 years ago, these markers have, for almost all research appli-
cations, become outdated by the availability for most livestock species of whole-genome 
sequences. The genomic sequences allowed the identification of millions of single nucleotide 
polymorphisms (SNPs) and other types of genetic variants such as insertions and deletions 
(indels), structural variation (SV), copy-number variation (CNV). The invention of “bead 
arrays” allowed the simultaneous genotyping of 10 000 to 1 000 000 SNPs (Nicolazzi et al., 
2015). Subsequently, whole-genome sequencing (WGS) (Eusebi, Martinez and Cortes, 2020) 
became more and more affordable. Section 3 will describe these approaches in more detail.

These developments have generated an ongoing “tsunami” of genotype and sequence 
datasets, and have been accompanied by the development of a multitude of new statistical 
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analyses and programs for data management and analysis (Biscarini, Cozzi and Orozco-
terWengel, 2018). Another consequential development has been the substantial progress 
in the analysis of ancient DNA (aDNA) (McHugo, Dover and MacHugh, 2019). All these 
developments have contributed to the realization of most of the original MoDAD objec-
tives, albeit with different markers than envisaged originally:

•	 The wild ancestral species of most livestock species were already identified based 
on mitochondrial DNA (mtDNA). More detailed studies, often using aDNA, have 
yielded more details on the interaction of several livestock species and their wild 
ancestors during and after domestication (MacHugh, Larson and Orlando, 2017). 

•	 The differentiation of breeds as well as their homogeneity can now be assessed 
unambiguously. This is, in itself, relevant, but also guides downstream analyses that 
assume breeds to be homogeneous populations.

•	 The genetic constitution of breeds can now be more accurately assessed via quan-
titative measures of diversity, admixture or subdivision, inbreeding, introgression 
and assortative mating.

•	 The evolutionary history of species and populations can be reconstructed on the 
basis of the phylogenetic relationships of breeds. The resulting data are commonly 
visualized by a “tree-like” (hierarchical) topology, but may also indicate gene flow 
between breeds with different histories. 

For the most important domestic species, we have obtained a fairly comprehensive 
global view of diversity – that is, also including Asian, African and South American breeds 
as well as those from high-income countries – by integrating national or regional datasets 
of SNP genotypes or whole genome sequences, even if these datasets originated from 
different laboratories (in contrast to studies based on microsatellites).

Other positive developments are the realization of more effective cryoconservation 
programs (Paiva, McManus and Blackburn, 2016; De Oliveira Silva et al., 2019) and the 
globalization of the diversity studies with active participation of institutes from all inhabited 
continents. The genomic characterization of breeds also led to the insight that livestock 
breeds have never been static phenomena, but rather are the result of a continuously 
dynamic history that has involved selection pressures that change over time, and has often 
included crossbreeding (Felius, Theunissen and Lenstra, 2015). As a consequence, attempts 
to establish priorities for conservation of breeds on the basis of neutral genetic markers 
(Lenstra et al., 2012) have been de-emphasized. 

Instead, attention has shifted toward the adaptive variation, SNPs, indels and CNVs 
that possibly contribute to environmental adaptation or other relevant traits. At least for 
monogenic traits, most of the adaptive variation resides in the structural genes (Nicholas 
and Hobbs, 2014), but there are interesting examples of intergenic mutations (Zappala 
and Montgomery, 2016; Aldersey et al., 2020). In addition, several methods have been 
developed for detection of a local perturbance of the diversity across the genome that 
may suggest the effect of selection, the so-called selection signatures (Maynard-Smith and 
Haigh, 1974; Randhawa et al., 2016; Friedrich and Wiener, 2019). In all these studies, 
the limiting factor is the validation of the signals found by genome-wide analysis or by 
studies of gene expression in terms of direct causative effects. Such genome-wide associ-
ation studies (GWAS) have also been facilitated by the availability of new genomic tools. 
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Genomics are continually creating new opportunities for increased response to selection 
and improved management of genetic diversity (Bruford et al., 2015; Oldenbroek and Van 
der Waaij, 2015).

From a fundamental scientific view, it will also be most interesting to link phenotypes to 
non-coding RNA molecules (Weikard, Demasius and Kuehn, 2016) and to epigenetic phe-
nomena (Giuffra and Tuggle, 2019). Because of the multitude of genes, traits and breeds, 
this promises to remain a large and rewarding area of research.
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SECTION 2

The basics of genomic  
diversity studies

Johannes A Lenstra, Utrecht University, the Netherlands

HOW TO CARRY OUT GENOMIC DIVERSITY STUDIES
This section provides a general overview of the steps to be undertaken when conducting 
genomic studies of animal genetic resources (AnGR). The process of genomic characteriza-
tion can usually be broken into a series of activities that are distinct in terms of time and 
space, but coordination among the steps is critical. Although the genotyping technologies 
have changed substantially since the previous guidelines (FAO, 2011b), the basic steps for 
any genetic diversity study have remained largely the same. 

PREREQUISITES
Consider the national context for the management of animal genetic 
resources
Genetic characterization is often undertaken as an academic research activity, which 
has value on its own, but the potential impact of the study will be greatly increased if 
undertaken in coordination with national framework for the management of AnGR (FAO, 
2011a). Nearly all countries have identified an organization to serve as its National Focal 
Point for Management of AnGR, and have nominated an individual to serve as a National 
Coordinator (FAO, 2021a). Contacting the National Coordinator prior to the study and 
keeping him or her informed as the study progresses is recommended for several reasons. 
Characterization is a key action in national implementation of the Global Plan of Action 
for Genetic Resources (FAO, 2007) and countries are regularly requested to report their 
activities to the FAO (e.g. FAO, 2021b). Many countries also have national strategies and 
action plans for management of AnGR (FAO, 2009), and characterization studies should be 
consistent with such plans. The National Coordinator should also be aware of the stake-
holders that will be interested in the results and their application in management of the 
characterized populations. To maximize the efficiency of your data collection efforts, phe-
notypic characterization (FAO, 2012) of the populations and their production system should 
be undertaken in concert with sampling of biological material for genomic characterization.

Know your breeds 
Characterization is itself an information-gathering activity, but efforts should be made to 
obtain as much background knowledge as possible about the target populations while plan-
ning your study. Sources of information will include the comprehensive breed encyclopaedia 
of Porter et al.(2016), scientific literature, national technical reports, popular press articles, 
breed databases such as the Domestic Animal Diversity Information System (DAD-IS) (FAO, 
2021a), the Breeds of Livestock (Oklahoma State University, 2015) and websites of breed 
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organizations. This information will help to formulate objectives, plan sampling strategies 
and develop hypotheses to be tested.

Written information should be complemented with input from local experts, livestock 
keepers and representatives from breed associations that are familiar with the herd books 
and breed history. These stakeholders may be able to share anecdotal information about 
breeds and provide contacts for sampling of biological material and measurements of 
phenotypic traits. 

Define clear objectives
Genomic analyses can be used to address a wide range of objectives and can be applied 
in many ways (see Section 4). These objectives are important for deciding on the number 
and type of animals to be sampled, the optimal genetic markers to be used, and comple-
mentary information to be collected during sampling. A common objective is to elucidate 
the relationships of a group of local breeds and their relationships to other breeds in the 
same geographical area, especially if these breeds are ancestral to one or more of the local 
breeds. For example, Kim et al. (2020) analysed the ancestry of indigenous African cattle 
and compared these cattle with European and Asian breeds. They found that the seem-
ingly distinct “breeds” shared a common history of gene flow. Many livestock breeds have 
already been subject to genomic characterization, and the data from those studies is often 
in the public domain. Therefore, comparison of targeted breeds with other breeds may not 
require sampling and genotyping of the complementary breeds. However, such analyses 
require a preliminary assessment to ensure that genotyping approaches were similar and 
shared common markers. 

Design the sampling
As noted earlier, genomic characterization will ideally be done in concert with phenotypic 
characterization and evaluation of the production environment. This will especially be the 
case when the study represents the first time that a population is characterized, and the 
objective is to capture the range of variability. To accomplish this, the sampling plan should 
consider the structure of the production environment, geographic locations and familial 
relationships (as much as possible). The following recommendations will help ensure a 
genetically diverse sample: 

•	 Preferably, sample in the areas that are close to the site of the development of the 
breed(s).

•	 Depending on the objectives of the study, relevant populations in other local 
regions or countries (transboundary breeds) may be sampled as well.

•	 If applicable, sample animals that represent all different subtypes or subpopulations 
from different agroclimatic zones (which should be recorded in the complementary 
data, see below).

•	 Typically, to improve representativeness, avoid sampling of animals that are more 
closely related than the population in general, e.g. no more than 10 percent of any 
one herd or village population should be sampled and at most five animals should 
be sampled from any single herd; and

•	 Avoid sampling animals with common grandparents.
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When planning for collection of samples from animals in different agroclimatic zones or 
any large area, a systemic approach is recommended. Two possible options are grid-sam-
pling and sampling along linear transects. With grid-sampling, a “grid” of squares is 
formed by drawing sets of equally spaced North-South and East-West running lines over a 
map of the sampling area. Equal numbers of animals are then sampled from each square. 
With linear transects, straight lines are drawn across the sampling area and animals are 
sampled (as much as possible) from the farms or herds that fall along (or close to) the lines.

Choose the genetic marker technology
The type of genetic marker technology used will influence the types of inferences that can 
be drawn from a genetic characterization study, and thus must be chosen judiciously. As 
a basic rule, the most advanced technology that is available for the species to be studied 
should be chosen, because this method will generally be the most informative. However, 
practical factors must be taken into consideration to address various trade-offs. The three 
technologies that are most frequently used for genetic characterization (in order of increas-
ing sophistication) are: (i) microsatellites; (ii) single nucleotide polymorphism (SNP); and (iii) 
whole genome sequencing (WGS). These technologies were briefly introduced in Section 1. 

Because SNP and WGS are more suited to assaying the entire genomics of organisms, 
and are thus much more appropriate for “genomic characterization,” these technologies 
are emphasized in this document. Nevertheless, microsatellites have a long history for 
genetic characterization and are still being utilized in situations where practical consider-
ations take centre stage (e.g. Yadav, Arona and Jain, 2017; Madilindi et al., 2020), and thus 
merit some discussion (see Box 1).

BOX 1

Microsatellites: glory and decline

Microsatellites are a type of genetic marker 

discovered in the 1980s. They consist of repeti-

tive units of 2 to 6 base pairs and are thus also 

known as “STRs” for short tandem repeat or 

“SSR” for short sequence repeat. Because of 

their abundance and fast PCR-based scoring, 

they revolutionized the genetic localization 

of heritable traits. In the 1990s, hundreds of 

microsatellites were discovered and published 

for the most common livestock species. Since 

2000, they have been used for many genetic 

diversity studies. 

They can be credited with a consider-

able scientific progress and have also been 

relevant for the management of livestock 

genetic resources:

•	 rapid tests of paternity and identity (still 

being done); 

•	 genomic localization of loci correspond-

ing to monogenic traits;

•	 quantitative estimates of the relative 

diversity of a breed via the expected 

heterozygosity (He);

•	 reasonably accurate indication of non-ran-

dom mating via the FIS heterozygote-defi-

cit parameter (see Section 4); and

•	 estimates of genetic distances and dif-

ferentiation between breeds, revealing 

common descent, crossbreeding and 

geographic clines. 

(Cont.)
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These analyses have been performed for 

global, continental or national populations of 

most livestock populations.1

On the other hand, microsatellites have 

several limitations, which affect the analysis of 

molecular diversity:

•	 With typically no more than one marker 

per chromosome in most characteriza-

tion studies, microsatellites do not attain 

genomic coverage.

•	 Scoring alleles cannot be automated and 

is error prone. 

•	 Estimates of genetic diversity depend 

on the panel of microsatellite markers, 

so comparisons are valid only within a 

dataset. Panels recommended by FAO2 

have not been universally adopted.

•	 Absolute allele sizes are not consistent 

across laboratories, even if the same 

equipment is used. Consequently, results 

of different labs with the same marker 

panel can only be combined by sharing 

reference samples or by using allelic lad-

ders as a size standard. 

•	 Because of the low number of markers 

used in most studies, typically 15 to 30, 

genetic distances between individuals 

cannot be estimated reliably. Also due to 

the limited number of markers, localiza-

tion of genetic traits is very imprecise. 

•	 They are not suitable at all for the 

recently developed and statistically pow-

erful modes of analysis.

Since the publication of the previous FAO 

Guidelines on Molecular characterization of ani-

mal genetic resources,2 microsatellites have been 

largely replaced by genome-wide bead arrays, 

whole-genome sequences and genotyping by 

sequencing (see Section 3). These more informa-

tive approaches generally yield superior results. 

On the other hand, indirect benefits of 

microsatellites should not be overlooked. They 

raised high expectations for genetic charac-

terization and thus catalysed the formation 

of a network of international collaborations 

and consortia, which still are in place. This 

paved the way for a rapid and most productive 

implementation of genome-wide and whole 

genome sequencing. 

Do microsatellites still have a place in 

genetic characterization? They remain appro-

priate for standardized routine paternity test-

ing. They may also be the only practical option 

if local options for SNP genotyping or WGS 

are not available or unreasonably expensive. 

There are also special cases for their use when 

merging new information with data from 

genotypes of historic samples that are no lon-

ger available (although this requires retyping 

at least some of the historical samples as a 

reference). However, for the reasons outlined 

above, microsatellites cannot anymore be gen-

erally recommended for genome-wide char-

acterization of genetic variation. In situations 

where microsatellites are the preferred or only 

option, utilization of markers from the stan-

dard FAO panel2 is strongly recommended.

1 �Groeneveld, L.F., Lenstra, J.A., Eding, H., Toro, 

M.A., Scherf, B., Pilling, D., Negrini, R., et al. 2010. 

Genetic diversity in farm animals – a review. Animal 

Genetics, 41(s1): 6–31. https://doi.org/10.1111/j.1365-

2052.2010.02038.x
2 �FAO. 2011. Molecular genetic characterization of 

animal genetic resources. FAO Animal Production and 

Health Guidelines. No. 9. Rome. www.fao.org/3/i2413e/

i2413e00.htm

Regarding the choice between SNP and WGS, the latter yields much more information 
and thus provides potentially more precision in subsequent genomic analyses. WGS also 
provides information about other forms of polymorphism, such as insertions and deletions 

https://doi.org/10.1111/j.1365-2052.2010.02038.x
https://doi.org/10.1111/j.1365-2052.2010.02038.x
http://www.fao.org/3/i2413e/i2413e00.htm
http://www.fao.org/3/i2413e/i2413e00.htm
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(indels) and structural variation (SV). However, WGS is much more expensive, and the 
greater amount of information produced requires substantially greater human and techni-
cal capacity for data storage, computing and analysis, which may be out of reach in many 
circumstances, especially in developing countries. Nearly all of the analyses described can 
be undertaken with data from SNP arrays, so this will be the most appropriate technology 
for most of the users. 

Numbers that count
For reliable estimation of allele frequencies of biallelic markers such as SNP, at least 20 animals 
per breed should be typed (Hein, Schierup and Wiuf, 2004). Smaller sample size decreases 
the precision of estimates of allelic frequencies, a parameter that underlies many genetic 
characterization analyses. This imprecision may inflate estimates of genetic distances among 
other breeds, for example. For multiallelic markers, at least 40 animals are required. A larger 
sample size is also recommended for subdivided breeds. 

For specific objectives, smaller (larger) samples sizes may be sufficient (required). Based 
on a comprehensive simulation to evaluate the properties of different statistical methods, 
a reasonable power to identify selection signatures (see Section 4) can be achieved with a 
smaller sample size (around 15 animals per population) when using a high-density SNP gen-
otypes, e.g. > 1 SNP per kb (Ma et al., 2015). For genome-wide association studies (GWAS), 
more samples will likely be needed (Ball, 2013) (see Section 3 and Section 4). Collection of 
more samples than these minimum values will help to increase precision of inferences and 
provide a backup in case of low-quality samples.

Know the rules
Genomic characterization involves the collection and analysis of genetic resources, and may 
generate data of relevance for intellectual property claims. Therefore, it is recommended 
that a formal agreement for acquisition and exchange of the material is made with the 
provider of the material prior to the start of the study. The standard approach is for all 
involved parties to sign a material transfer agreement (MTA), which stipulates the terms of 
the material exchange, describes how the material will be used and handled after charac-
terization and analysis. The provider may already have a standard MTA and provide access 
to the genetic resources only upon acceptance of the terms of the MTA. The MTA should 
also create legal certainty as to what can be done with the material (such as storage or 
distribution after the study), as well as with any data resulting from the study. Both parties 
must be informed about any limits to the rights that the provider can cede to the receiver 
of the material, in accordance with national regulations. In principle, the providers of the 
material are to maintain ownership throughout the duration of the study. The providers 
of the genetic material should be regularly informed about the progress of the study and 
results obtained. An example MTA is provided in Appendix 2.

Furthermore, international exchange of research material involves a specific set of rules. 
First, AnGR are considered sovereign to their country of origin. Both the providers of mate-
rial and their collaborators must therefore adhere to the terms of each country’s regulations 
implementing the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable 
Sharing of Benefits Arising from their Utilization (Nagoya Protocol) of the Convention on 
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Biological Diversity (CBD), such as the signing of an access and benefit-sharing (ABS) contract 
negotiated on mutually agreed terms (MAT). More information about the Nagoya Protocol can 
be found in Box 2 and in other specialized documentation prepared by FAO (2019). Second, 
because biological material is being exchanged, collaborating scientists must be aware of any 
sanitary regulations involving international shipments and obtain the necessary permits. 

BOX 2

Nagoya Protocol: In brief

Hartmut Meyer

The Nagoya Protocol was developed to ensure 
the fair and equitable sharing of the benefits 
arising out of the utilization of genetic resourc-
es across countries, one of the three objectives 
of the Convention of Biological Diversity.1 This 
requires appropriate access to genetic resources 
and appropriate transfer of relevant technolo-
gies, considering all rights over those resources, 
technologies and appropriate funding. The 
Nagoya Protocol was adopted by the CBD in 
2010 and has since been ratified by more than 
125 member governments. 

As confirmed by the Nagoya Protocol, 
countries, in the exercise of their sovereign 
rights over natural resources, may provide that 
access to genetic resources for their utilization, 
which shall be subject to their “prior informed 
consent” (PIC). Many countries have decided 
to not restrict access to AnGR. However, where 
domestic legislation or regulatory require-
ments require this, users need to obtain per-
mission prior to accessing and using genetic 
resources for research and development, and 
share the benefits arising from this utilization 
of genetic resources on mutually agreed terms 
(MAT). The Nagoya Protocol, as well as many 
national access and ABS laws, do not go into 
any detail as to what constitutes “utilization” 
of a genetic resource, and therefore requires 
PIC and MAT. Certain activities, such as tax-
onomic research which may or may not be 
further developed commercially, could require 
PIC and MAT in one country and not in anoth-
er. It is therefore important to specify in detail 
the intended activities being undertaken and 
to clarify with the competent authority of the 

country that provides the genetic resources if 
and what kind of permit is required.

In some countries, access to traditional 
knowledge associated with genetic resources 
that is held by indigenous peoples and local 
communities is also subject to their PIC or 
approval and involvement, and MAT have to 
be established.

Countries that ratify the Nagoya Protocol 
are expected to ensure that genetic resources 
utilized within their jurisdiction have been 
accessed in accordance with PIC and that MAT 
have been established, as required by the 
ABS measures of the country from which the 
resources were obtained. It is therefore crucial 
to comply with the applicable ABS measures 
irrespective of where the genetic resources are 
actually used for research and development. 
This is because parties to the Nagoya Protocol 
are under an obligation to provide that any 
research and development activity on genetic 
resources within their jurisdiction complies with 
the ABS measures under which the genetic 
resources have been accessed. 

Through so-called “checkpoints” parties to 
the Nagoya Protocol ensure that research and 
development on genetic resources within their 
territory are based on the PIC of the party that 
provided these genetic resources, as applicable. 
Once PIC has been granted and the permit or 
its equivalent has been made available to the 
ABS Clearing House, they constitute an Interna-
tionally Recognized Certificate of Compliance.

1 �CBD. 2011. Nagoya Protocol on access to genetic 

resources and the fair and equitable sharing 

of benefits arising from their utilization to the 

Convention on Biological Diversity. Montreal. Cited 

14 September 2020. www.cbd.int/abs/doc/protocol/

nagoya-protocol-en.pdf

http://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf
http://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf
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The ABS contract and MAT define the limits of utilization and the sharing of benefits. In 
general, obtaining these contracts involves a phase of negotiation that must be considered 
before one starts a genomic characterizations study. Box 3 provides key points to consider 
regarding this negotiation process.

IN THE FIELD
Collecting samples
For this most crucial step, the following considerations are relevant:

Almost all cells or tissues may be used for DNA analysis: blood, semen, hide, bone, 
tissue (e.g. ear tissue), plucked hair (only the root cells contain nuclei, but cut hairs can be 
used for analysis of mitochondrial DNA) and feathers.

BOX 3

Incorporation of compliance to national 
ABS frameworks into project planning 
and implementation
Karen Marshall

Compliance with ABS measures adds a level of 

administrative complexity to the execution of 

research and development projects involving 

AnGR. The ABS measures require specific plan-

ning, but may help avoid eventual disputes 

regarding the sharing of benefits arising from 

such projects that could otherwise occur in the 

course of the project.

The following points regarding ABS com-

pliance should be considered in preparation 

for genomic characterization studies involving 

international exchange of AnGR:

(i)	 Account in the project timeline for the 

time required to negotiate the ABS con-

tract and obtain PIC, the national ABS 

permit and other applicable permits 

(typically 2 months to 2 years, depend-

ing on the country.

(ii)	 Be aware that it may not even be possi-

ble to negotiate the required contract. 

(iii)	 Include in the project budget sufficient 

funds to cover whatever benefits have 

been negotiated with the providing 

country. Expected benefits are variable by 

country, and including provider countries 

as project collaborators may be advanta-

geous, inasmuch as some of the benefits 

will be in-kind, rather than monetary.

(iv)	Consider carefully both present and 

potential future uses of the AnGR sam-

ples and prepare the wording of the 

contract accordingly. If you want to use 

the resources for a purpose other than 

that stated in the original agreement, a 

new agreement will be required. 

(v)	 Keep all relevant documentation asso-

ciated with the negotiation of the con-

tract and granting of PIC and the ABS 

permit. These documents will be crucial 

for demonstrating compliance with the 

ABS laws of the providing country if the 

country in which you are using AnGR 

has adopted ABS compliance laws 

(e.g. European Union and the United 

Kingdom of Great Britain and Northern 

Ireland).

(vi)	Keep a record of all benefits (both 

monetary and non-monetary) obtained 

by both the provider and user of the 

genetic resource.
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High-quality DNA is most easily obtained from samples of peripheral blood, organs or 
other tissues. Most convenient are blood samples collected in an anti-coagulant (EDTA or 
natrium citrate). A protocol for blood collection is provided in Appendix 3.

Collect enough material for present and future studies (considering ABS agreements 
for future studies). This process may either include the collection of multiple samples per 
animal, or of a sufficiently large sample that can be aliquoted into separate portions in the 
laboratory. For most PCR-based applications, including high-density SNP arrays and whole 
genome sequencing, 5 ml of blood is adequate. Note that poultry species have enucleated 
erythrocytes and, therefore, much less blood (~1 ml) is required.

Blood samples can be transported at ambient temperatures, but in tropical regions, 
samples should be processed within 36 hours.

For longer storage, samples can be placed in a room-temperature preservative such as 
Queen’s buffer (0.01 M Tris/HCl, 0.01 M NaCl, 0.01 M EDTA and 1 percent n-lauroylsarco-
sine, pH 8.0) (Seutin et al., 1991).

Tissue samples of 1 cm squared should be minced to 1 mm squared pieces and placed 
in Queen’s buffer or 70 percent ethanol. Air-drying of ethanol-treated samples allows 
long-term storage and easy transport of samples. Alternatively, pieces of tissue may be 
dehydrated directly by placing them in vials on crystals of silica gel.

Hair samples should be desiccated as soon as possible and stored dry.
FTA® cards can be used for collection of genetic material with DNA to be amplified by 

PCR, but special protocols are required for some species to obtain double-stranded DNA. 
Moreover, the single-stranded DNA obtained with standard isolation protocols is not suit-
able for all other applications.

Samples that are to be used for cloning and Southern blotting require double-stranded 
DNA of high molecular weight.

Labelling of samples should be unambiguous and permanent. Whenever possible, the 
official identification number of the animal should be recorded.

Bank it: store all samples and gather and organize all relevant information unambigu-
ously in such a way that it can be retrieved and understood, even by persons not involved 
in the sampling.

Collecting data
Recording the following information for each sample is essential:

•	 animal identification, preferably a herd book registration number, if available;
•	 date;
•	 location, preferably based on global positioning system (GPS) coordinates;
•	 name of collector;
•	 breed;
•	 sex of animal; and
•	 type of sample (blood, hair, etc.).

Collection of the following information is strongly recommended and will be necessary 
for some types of analyses (e.g. phenotypes will be necessary for studies to determine 
genomic regions having influence on traits):

•	 age, or date of birth;
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•	 any relevant phenotype(s);
•	 basic pedigree information (i.e. parents, if known);
•	 digital photograph(s) of animal, showing any interesting morphological features, 

and including a measuring stick to evaluate body measurements; 
•	 size of herd; and
•	 notes about any recent change in geographic location of the animal.

An example of a sampling form is provided in Appendix 4.
In addition to the information recorded for each sample, for each breed, a form like the 

example in Appendix 5 should be compiled on the basis of the information available. This 
form addresses breed origins, farming practices, basic production information, and features 
of the breed such as productivity, disease resistance or adaptation to local conditions. For fur-
ther advice on collecting data on breeds’ phenotypes and production environments, consult 
the FAO Guidelines on Phenotypic Characterization of Animal Genetic Resources (FAO, 2012).

IN THE LABORATORY
Technological advancement in genomics has been accompanied by the emergence of pri-
vate companies providing custom genotyping or sequencing services. For many genomic 
applications, all laboratory procedures subsequent to sample collection can be outsourced, 
such that a traditional “wet lab” is not strictly needed. Outsourcing saves the invest-
ment in expensive and specialized equipment, which tends to become quickly obsolete. 
Nevertheless, several issues need to be considered even if the experiments are outsourced.

Extracting DNA
Extraction of DNA is a key step for in-house genotyping and for analyses outsourced to 
companies that require DNA instead of raw samples. Extracted DNA is also subject to less 
stringent sanitary regulations than are biological samples when shipped across borders. 

Several reliable protocols for DNA extraction are available. Older protocols are based on 
Proteinase K/SDS lysis of cells, organic extraction and alcohol precipitation. Salt precipita-
tion avoids organic solvents, but the long-term stability of the DNA samples is problematic. 
Convenient commercial kits based on the specific binding of DNA to resins are available 
for several kinds of tissues and usually perform well. Whenever a new DNA extraction pro-
cedure is used, a practice run on test samples should be performed to gain experience and 
ensure that it works properly before being applied to the field samples. 

DNA assay
Section 3 discusses protocols for genotyping and sequencing in detail. In general, these 
protocols are highly automated and straightforward, but the indicated procedures need 
to be followed precisely. The following are general suggestions that will be applicable in 
many situations:

•	 Genotyping methods that are sensitive to variation between laboratories, such as 
microsatellite typing, should include at least one reference sample shared by the 
laboratories involved.

•	 The inclusion of a duplicate sample should be considered to permit evaluation of 
accuracy.
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•	 The quality of the resulting data must be checked critically, even for outsourced 
analyses.

DATA ANALYSIS
Sections 3 and 4 address specific issues of data analysis according to the type of data (i.e. 
individual loci or sequence data) and study objective. For the many scientific objectives, 
software is freely available and greatly simplifies the tasks associated with data analysis 
(see Appendix 6). The easy access to software does not, however, relieve the researcher 
from the responsibility for understanding the genetic and statistical principles underlying 
the analyses. Each scientist must understand whether and why a specific approach is or 
is not suitable for his or her data and objective. Instead of copy-pasting computer output 
into manuscripts, the researcher should evaluate the results critically. For many analyses, 
multiple options for software are available and repeating an analysis using other options or 
another program can be informative. When software requires the input of parameters, the 
effect of parameter changes should be evaluated, especially if true values of the parameters 
are unknown. Analysis of simulated data is another option for validation of an algorithms. 
Results of the data analyses should be interpreted in the context of existing biological, 
genetic and historical knowledge.

PUBLISH IT
Let the world know
Publish your findings in a scientific journal. Explain how the results are relevant in a greater 
context for the management of AnGR. Open-access journals are recommended because of 
their wide diffusion and free accessibility.

Share the credit
Properly acknowledge contributors of samples and/or data. In general, include all col-
leagues who supplied samples and/or data in the preparation of any scientific publications 
so that they are fully aware of the key results and can be recognized as co-authors.

Share the data
After publication, deposit your data in a public database and/or comply with requests to
make datasets available as already requested by many journals.

For each of the three tasks listed above, it’s important to ensure that all activities are 
addressed in the MTA. 

TRANSLATE THE RESULTS
Genomic characterization studies are excellent capacity building activities and contribute 
to academic knowledge, but they should also be used to improve the management of 
the AnGR involved. The country’s National Coordinator for the Management of Animal 
Genetic Resources should be informed about the study, and should be provided with 
data that can be uploaded to the Domestic Animal Diversity Information System (DAD-
IS) (FAO, 2021). Researchers should communicate their results and conclusions to the 
main stakeholders of the breeds evaluated, and, if requested, provide recommendations.  
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The following phenomena can be detected through genomic analyses and may be rele-
vant for breed management:

•	 Original diversity. Populations located in or having originated near their species’ 
centre of domestication are presumed to have the greatest genetic diversity. The 
level of diversity can be measured by the amount of heterozygosity, the number of 
unique alleles and haplotypes, or the nucleotide diversity. 

•	 Unique origin or history. In many instances, populations from the same region 
have relatively high genetic similarity, even if they have distinct phenotypic char-
acteristics, suggesting that they share a common origin or history. Breeds with a 
distinct origin are assumed to carry unique alleles and thus be of greater value for 
conservation. 

•	 Pedigree errors. Genetic tools now allow for errors in recording of parentage 
to be identified and remedied; this is especially useful in the case of unknown 
paternity. 

•	 Crossbreeding or hybridization. Breeds that have been subject to recent 
crossbreeding are often considered to have decreased conservation value relative 
to “pure” breeds because of lower distinctiveness, even if they still maintain a 
substantial portion of unique genetic diversity. This is especially the case when the 
crossbreeding or hybridization involved one or more international transboundary 
breeds. On the other hand, systematic selection may have created a stable and 
valuable combination of traits from two breeds, typically a high productivity from 
one breed and strong adaptation to a tropical climate from another breed. Well-
known examples are the Girolando dairy cow and the Dorper sheep.

•	 Consanguinity. Conservation activities should avoid inclusion of related animals as 
much as possible. For example, gene banks should avoid selecting related donors and 
in vivo programmes should select sires that are as unrelated as possible. Genomics 
can be used to determine the genetic relatedness of potential donor animals. 

•	 Inbreeding depression. High homozygosity within a breed often leads to 
decreased fitness and survival. Genomics can be used to diagnose excessive homo-
zygosity and to plan matings that decrease the incidence of inbreeding depression. 
In the worst-case scenario, strategic crossing with another breed may be required 
to introduce new genetic variation and genomics may be used to identify the most 
suitable breed.

•	 Distinctive phenotypes. Breeds are often defined by one or more distinctive 
genetic traits, which may justify their conservation.

•	 Genetic defects. Many genetic defects are determined by mutations of one or a 
few genes. Identification of the genomic locations of these genes can facilitate elim-
ination of the defects, and determination of the precise mutation may allow for the 
development of control therapies. Deficit or absence of a homozygous genotype for 
a given locus may indicate lethal recessives. With the novel CRISPR/Cas technology 
(Jinek et al., 2012) gene defects may in the future become correctable, and the same 
technology can also introduce mutations that confer desired traits (Menchaca et al., 
2020), although genetic modification is not yet permitted in many countries.



Genomic characterization of animal genetic resources – Practical guide20

Genomic information will rarely be the only tool available for the management of a 
breed, but can often complement factors such as productivity, breed demographics and 
cultural significance in making decisions on AnGR management.

INTERNATIONAL COORDINATION
Results from genomic characterization studies have potentially high value not only for 
national management of the breed from which the samples originated, but also for other 
breeds and countries. Thus, sharing of the resources associated with such studies is strongly 
recommended, whenever possible, under the terms of use agreements and contracts and 
the Nagoya Protocol. As already mentioned, the data from such studies should be made 
available, preferably in a public repository such as DRYAD (2021) or Figshare (2021). DNA 
samples should be stored in a biobank for use in follow-up studies, including international 
collaborations. Once again, the rules of the source country and conditions imposed by the 
original owners of the animals must always be respected.
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Genomic tools and methods
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Since the appearance of the previous guidelines on Molecular genetic characterization of 
animal genetic resources (FAO, 2011), there has been a spectacular growth in the use of 
genomic technologies, which are still becoming more and more powerful and accessible. 
As an initial step in application of these technologies, whole genome sequencing (WGS) 
was performed on selected animals from each major livestock species. This sequencing 
established initial reference genomes, which then allowed the development of multi-locus 
bead arrays of single nucleotide polymorphism (SNP) for most domestic species. These 
arrays fulfilled the objectives originally envisaged for microsatellite genotyping and have 
remained extremely useful. The next development was a much wider adoption of WGS 
technologies. More animals were fully sequenced and reference genomes were considera-
bly improved. Approaches such as resequencing and genotyping-by-sequencing (GBS) were 
developed and applied, and now allow the collection of WGS datasets for tens or hundreds 
of individuals, yielding vast multi-locus genotype datasets. All these processes are self-re-
inforcing, since the availability of many high-density genotypes allows the elevation of low 
to high density datasets by imputation. This section explains these various developments 
and approaches in more detail. 

SNP GENOTYPING
Single nucleotide polymorphism (SNP)
A SNP is a deoxyribonucleic acid (DNA) sequence variation that occurs by substitution of 
a nucleotide at a specific position in the genome. The SNP is the most common type of 
polymorphism and is estimated to occur with a frequency of one SNP per 1 kilobase (kb) 
in most mammalian genomes. SNPs have increasingly become the marker of choice and 
have largely replaced microsatellite markers to assess genetic diversity, structure and rela-
tionships among populations; and particularly to identify genomic regions associated to 
economic traits. As noted in Section 1, SNPs have several advantages over microsatellites, 
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including: (i) stable inheritance; (ii) distribution throughout the genome at a much greater 
density; (iii) location in coding regions that can possibly alter protein function and pheno-
typic expression; (iv) location nearby or within quantitative trait loci (QTL) of interest; and 
(v) suitability for high throughput genotyping.

Candidate SNP genotyping methodologies
Discovery of a SNP at the candidate gene level is done by targeted resequencing of specific 
regions of the genome in a subset of unrelated individuals representing the species or the 
populations of interest. Several methodologies are available to genotype one or a few SNPs 
identified in specific segments of candidate genes, including exons, introns, promoters and 
untranslated regions. Most of these methods are based on conventional or real-time poly-
merase chain reaction (PCR) procedures. A few examples include: (i) traditional gel-based 
approaches, such as amplification refractory mutation system (ARMS; Little, 2001), restrict-
ed fragment length polymorphism (RFLP; Jarcho, 1994), single strand conformation poly-
morphism (SSCP; Dong and Zhou, 2005), denaturing gradient gel electrophoresis (DGGE; 
Strathdee and Free, 2013); and (ii) medium throughput approaches, such as competitive 
allele specific polymerase chain reaction (KASP assays; He, Holme and Anthony, 2014), 
exonuclease detection (Taqman assay; Holland et al., 1991), mass spectrometry-based 
primer extension detection (Sequenom) and high resolution melting (Bradić, Costa and 
Chelo, 2011).

SNP microarrays
Advances in next generation sequencing technologies and rapidly decreasing costs of 
WGS have made SNP discovery at the genome level possible in most livestock species. The 
process includes WGS of individuals from a subset of populations of interest and selection 
of polymorphic loci for additional genotyping in a larger pool of animals, often using high 
throughput SNP microarray technology. The SNP microarrays consist of allele-specific oli-
gonucleotide probes fixed on a solid support, such as glass slides or silicon quartz wafers. 
The target DNA (whole genome) samples are fragmented and labelled with a fluorescent 
dye, and the fragments are then amplified and hybridized to these oligonucleotide probes 
for single nucleotide extension or ligation. The labelled SNPs are visualized by an immu-
nohistochemistry assay to increase the signal intensity and infer the genotypes accurately. 
Box 4 provides some technical details about the SNP genotyping platforms offered by two 
main commercial suppliers.
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BOX 4

Commercial options for SNP genotyping

Two major commercial SNP array platforms 

are currently available for genome-wide SNP 

typing of livestock species: (i) Illumina’s Infini-

um iSelect Microarray or BeadChip, based 

on single nucleotide extension or allele-spe-

cific primer extension,1 and (ii)  Affymetrix’s 

GeneChip or AxiomArray, based on molecu-

lar inversion probe hybridization.2 The two 

platforms differ in their array fabrication and 

protocols. The BeadChip uses 50-mer (i.e. 50 

nucleotides) allele-specific probes, while the 

GeneChip uses 25-mer and/or 30-mer probes 

for hybridization with target DNA samples.

The BeadChip is produced by etching out 

“wells” on a silicon wafer, each of holds a 

spherical bead. Each of the beads is coated 

with a specific oligonucleotides (short 

strand of DNA) containing 29mer address 

tags and 50-mer SNP specific primers. 

Every oligonucleotide is complementary to 

a different strand of DNA adjacent to a 

given target SNP. The DNA sample to be 

tested is fragmented and combined with 

labelled single molecules for each of the four 

nucleotides in DNA and then passed over the 

chip. The fragments in the sample that are 

complementary to oligonucleotides on the 

beads attach to them by hybridization and are 

then extended by a single labelled nucleotide 

(i.e., matching the sequence at the site of 

the SNP). The genotype at the SNP is then 

determined by measuring the intensity of 

fluorescence after exposure to a laser.

The GeneChip is produced by in situ 

synthesis of oligonucleotide probes on a 

chemically protected array surface. The method 

relies on a photolithographic process, meaning 

that each nucleotide in each oligonucleotide 

is printed on the chip through exposure 

to or masking from ultraviolet light. The 

sequential application of specific lithographic 

masks determines the order of the probe 

sequence synthesized on the array. As with the 

BeadChip, the sample DNA is first fragmented, 

and then passed over the chip. The subsequent 

automated genotyping process then consists 

of four steps: (i) hybridization of fragmented 

DNA to the oligonucleotide probes on the 

chip; (ii) staining to differentiate among 

nucleotides; (iii) rinsing away of the residual 

DNA and stain; and (iv) imaging to determine 

genotypes.

1 �Illumina Inc. 2016. Infinium® iSelect® Custom 

Genotyping Assays. Guidelines for Using the 

DesignStudio™ Microarray Assay Designer Software 

to Create and Order Custom Arrays. Technical Note. 

Cited 02 February 2021. www.illumina.com/documents/

products/technotes/technote_iselect_design.pdf
2 �Affymetrix Inc. 2020. Mitigating Sequencing Errors, 

Monomorphs, and Poor Performing Markers during 

de novo SNP Selection for Genotyping Applications. 

Technical Note. Cited 28 December 2020. https://assets.

thermofisher.com/TFS-Assets/LSG/brochures/mitigating_

genotyping_appnote.pdf

SNP array design
The process of SNP array design starts from SNP discovery, and includes validation of  
de novo variants, selection of marker loci, validation of draft SNPs and synthesis of arrays.  
To fully understand the process of SNP array design, one must have a grasp of some basic 
concepts for WGS. These concepts and associated terminologies are explained in Box 5.  
A more detailed discussion of WGS is found later in this section.

http://www.illumina.com/documents/products/technotes/technote_iselect_design.pdf
http://www.illumina.com/documents/products/technotes/technote_iselect_design.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/brochures/mitigating_genotyping_appnote.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/brochures/mitigating_genotyping_appnote.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/brochures/mitigating_genotyping_appnote.pdf
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BOX 5

Basic concepts of whole-genome 
sequencing

The process of WGS involves three basic steps:

Fragmenting the genomic DNA strands 

into segments. The WGS technology is rapidly 

improving and the length of an individual 

DNA segment that can be sequenced varies. 

Depending on the technology used, the DNA 

in a given sample is either kept as entire as 

possible or is broken into fragments. A DNA 

sample contains many copies of an animal’s 

genome, which are fragmented by physical 

means (e.g. sonication) and thus break 

in random locations. This results in many 

fragments, each of which is fully or partly 

overlapping with other fragments.

Sequencing individual segments. The 

sequence of an individual segment is called 

a “read.” Because a given sample includes 

many copies of DNA, sequencing all fragments 

is neither possible nor necessary. However, 

sequencing more fragments helps to ensure 

that as much of the genome is sequenced as 

possible and results in a greater accuracy of the 

final sequence. Two terms that characterize 

the quality and quantity of sequencing data 

are “coverage” and “depth”. These terms are 

related and are often used interchangeably, 

but also have distinct meanings. When 

expressed as a percentage, coverage refers 

to the proportion of genome that has been 

“read” (i.e. sequenced). Depth (or coverage 

depth) is essentially the average number of 

times that a random nucleotide in the genome 

has been included in one of the sequenced 

reads (by chance, some regions will have 

been sequenced more often, some less often). 

Depth is usually expressed as value “nx” and 

can be calculated by dividing the amount of 

data produced in the sequencing assay by 

the data size of a single genome sequence. 

For example, if a sequencing assay produced 

30  Gb of data for a single genome of 3  Gb, 

the depth would be 10x. Coverage is also used 

as direct synonym of depth. Increasing the 

depth of sequencing increases the accuracy, 

but it also increases the cost. The cost and 

depth must therefore be balanced, and the 

appropriate depth depends on the sequencing 

objective.

Converting the data for individual 

segments into a full genomic sequence. The 

fact that individual segments are overlapping 

allows us to reconstruct the segments into 

full chromosomes and genomes. This process 

is accomplished by using sophisticated 

bioinformatic software, and is based on 

“alignment” of fragments based on finding 

the commonalities between them and the 

reference genome for the species. When no 

reference genome exists, then, an original 

genome must be “assembled”, which is a more 

complex processing that usually relies on long 

read sequencing (see later in the section) and 

comparison of genomes with related species, 

when feasible.

SNP discovery. The ideal SNP discovery process for designing and developing a diversity 
array for a given livestock species involves WGS of a panel of unrelated individuals, pref-
erably from diverse breeds across widely dispersed geographical locations, thus ensuring 
the detection of as many of the variants present within the targeted species as possible. 
The low-depth sequencing of large numbers of individuals has proven to be more advan-
tageous than deep sequencing of fewer individuals in improving the power of the SNP 
discovery process (Buerkle and Gompert, 2013; Homburger et al., 2019). When available, 
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SNPs identified from previous studies and stored in public databases (e.g. Hapmaps, BAC 
libraries, dbSNP) can also be utilized to increase the number of candidate SNPs available for 
the design of the array (Matukumalli et al., 2009).

Selection of SNPs. Errors in genome sequencing can lead to the detection of false SNPs. 
Hence de novo variants need to be validated based on quality parameters like: (i) minimum 
sequencing read depth; (ii) consensus base ratio; (iii) SNP quality score; and (iv)  relative dis-
tance of the base from the 3’-end of the read, normalized by read length (Shen et al., 2010). 
Generally, the SNP discovery process results in the identification of several million SNPs after ini-
tial validation. Among these, a subset of loci (~ 2–3 million) needs to be selected for drafting a 
marker panel (screening array) based on different criteria (Fan et al., 2010; Kranis et al., 2013):

•	 in silico design score for likelihood of success in the genotyping assay;
•	 type of polymorphism (i.e. transition versus transversion);
•	 minor allele frequency (MAF), that is, frequency of the less-common allele for 

biallelic SNP;
•	 presence of nearby SNPs (e.g. exclusion of SNPs within 10–15 bases);
•	 linkage disequilibrium (LD) with other SNPs included in the panel;
•	 physical distribution of SNPs (e.g. equidistant spacing over the genome);
•	 polymorphism in multiple populations; and
•	 enrichment of specific regions of the genome (e.g. genomic regions potentially 

associated with important phenotypic traits).
Validation of SNPs. The screening array with a draft panel of preselected SNPs must be 

validated to identify a subset of high-performance SNPs that show the potential for various 
downstream applications, such as diversity analysis, marker-trait association studies and 
gene mapping. During the process of SNP validation, the following criteria are utilized to 
identify loci that are placed on routine genotyping arrays (Illumina Inc., 2016; Affymetrix 
Inc., 2020; Fan et al., 2010; Kranis et al., 2013):

•	 performance of SNPs in terms of high call rates (i.e. proportion of samples for 
which the genotype can be resolved);

•	 accuracy of genotyping (e.g. efficiency in clustering genotypes, to distinguish 
homozygous and heterozygous classes);

•	 informativeness of SNPs;
•	 association with traits of interest;
•	 tagging other variants based on LD;
•	 imputation of other variants in the genome; 
•	 spacing and location with respect to known LD blocks (genomic regions with low 

diversity);
•	 functional significance of SNPs (e.g. exonic/intronic, synonymous/non-synonymous, 

coding DNA sequence/untranslated region).
Routine genotyping array and marker density. Arrays of different SNP densities may be 

used depending on the purpose of downstream applications and the genetic structure of the 
population investigated. Among the arrays routinely used in livestock species, the marker den-
sity ranges from low (< 20 000 SNP), medium (50 000), medium high (150–200 000) to high 
(> 500 000) SNP density. The cost per array increases with the number of SNPs, but the cost 
per marker decreases. The best-performing and most informative markers can be utilized to 
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design smaller, cost-effective arrays for routine genotyping for a specific purpose. Low-density 
SNP arrays designed with markers having higher MAF and uniform spacing across the genome 
may be used to “impute” (see specific subsection on this topic later in this section) to a higher 
SNP density or even a complete sequence, if a large set of reference animals are genotyped at 
higher density or whole-genome sequenced (Boichard et al., 2012). However, with advance-
ments in array fabrication and automated fluidic technologies, the cost of medium density 
arrays has significantly decreased, resulting in the phasing out of low-density arrays.

Ascertainment bias (AB)
When SNPs selected for designing and developing an array are discovered by sequencing 
only a few samples or from only a few selected breeds, an ascertainment bias (AB) may 
occur, affecting inferences about larger and distinct populations. Two major kinds of AB are 
associated with SNPs: (i) MAF bias; and (ii) subpopulation bias. MAF bias occurs when the 
SNPs are preferentially selected based on intermediate frequencies and is nearly impossible 
to avoid with SNP selection. The MAF bias results in over-representation of common poly-
morphic loci but under-representation of low frequency SNPs. Consequently, estimates of 
population genetic parameters, allele frequency distribution and linkage disequilibrium can 
be biased (Albrechtsen, Nielsen, F. and Nielsen, R., 2010; Heslot et al., 2013). Subpopulation 
bias occurs when the SNP discovery panel is chosen from individuals belonging to a specific 
population or a small group of breeds. This results in an overestimation of the variability 
present in that population or group of breeds but an underestimation of the variability in 
genetically dissimilar populations. Accordingly, this AB can inflate heterozygosity estimates 
in populations of breeds that are closely related to the breeds in the SNP discovery panel. 
The AB can increase or decrease the estimates of various genetic parameters as compared 
to the expected estimates from unbiased data, thus distorting information on population 
differentiation (Lachance and Tishkoff, 2013; McTavish and Hillis, 2015).

The phenomenon of AB is not unique to SNP markers and may also occur with mor-
phological and microsatellite markers. The AB in microsatellites occurs when the most 
polymorphic markers are typically selected (Vowles and Amos, 2006; Vali et al., 2008). 
Such bias influences estimates of genetic variability of populations, but the influence of 
biased SNPs is much greater than that of microsatellites, by virtue of their large numbers 
and biallelic nature. One of the potential approaches to mitigate AB is to adopt SNP filtering 
strategies, such as LD pruning (see also later in the section). The basic idea is to remove 
multicollinearity effects by removing SNPs that are highly correlated with other SNPs within 
a given genome window, thus reducing LD among the SNPs left after pruning. LD pruning 
has been effective in reducing AB when estimating genetic differentiation measures among 
populations, including genetic distance, fixation index, inbreeding coefficient, kinship and 
principal component analysis (PCA – see Section 4) (Malomane et al., 2018). Although 
LD-based pruning does not fully offset the AB, it does help to reduce its effects. Another 
potential approach to mitigate AB is to utilize ancestral SNPs (i.e. those SNPs that are also 
polymorphic in wild relatives of a given livestock species) while comparing highly divergent 
populations. The ancestral loci have relatively higher heterozygosity and are less likely to 
show population bias, but fine scale patterns of diversity among closely related breeds 
may be missed (Malomane et al., 2018; Barbato et al., 2020). If resources are available,  
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the sequencing of a few samples and comparison of estimates of genetic variation from the 
sequence data versus the SNP data can help to determine the degree of AB.

How to choose your array?
Choosing a suitable array for genotyping depends on the purpose of the study. Although 
not exclusive, the following factors may be considered while choosing the array:

•	 SNP density (e.g. high, medium and low-density arrays);
•	 potential AB (e.g. genetic/geographic distance between discovery panel and the 

population to be investigated);
•	 tagging of specific genomic features (e.g. markers recommended by the Inter-

national Society for Animal Genetics (ISAG) for parentage testing, copy number 
variants (CNV), markers for detection of recessive traits);

•	 SNPs in common with existing genotype data;
•	 cost effectiveness of genotyping (e.g. marker density vs array cost); and
•	 performance of the array (genome coverage, genotype clustering).

Selecting a high-density array for genome wide association can help in capturing max-
imum possible variants that have potential influence on the trait (Tsai et al., 2015). In case 
of genetic evaluation (genomic selection) studies, where genotypes/sequences of several 
individuals from the reference population are available and population LD is generally high, 
choosing a low-density array followed by genotype imputation (see subsequent subsection) 
may be cost-effective (Boichard et al., 2012; Georges, Charlier and Hayes, 2019). With the 
rapid growth of sequence/marker information over time, newly updated versions of arrays 
with special features keep evolving for many livestock species across different platforms 
(see Appendix 7). While choosing a new array for genotyping, checking the overlap of SNP 
with other available arrays can improve harmonization with existing data for comparative 
and meta-analysis across studies.

Merging SNP datasets
Unlike microsatellites, SNP markers facilitate merging and harmonizing datasets across differ-
ent studies, generated in various laboratories and/or different platforms. The genome wide 
SNP genotypes can also be merged with the genotypes identified by genome resequencing 
data to generate information on specific loci of interest. Datasets are merged based on mark-
er identification numbers and genomic positions, after alignment to a standard reference 
genome assembly of the species investigated. Care needs to be taken on the strand orien-
tation of markers while merging different datasets. Open-source programs, such as PLINK 
(Chang et al., 2015; Purcell, 2010), are available to facilitate merging genotypes from different 
datasets and optimize resources available for genomic characterization studies in livestock.

GENOTYPING-BY-SEQUENCING
The principle 
Although SNP arrays are arguably the most popular genotyping platform, methods have 
been developed to ascertain genotypes from DNA sequence data. In general, these meth-
ods obtain genotypes based on one of two approaches: (i) low depth WGS; or (ii) sequenc-
ing a specific subset of the genome (also known as “reduced-representation sequencing”). 
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These two classes of methods are often collectively referred to as “genotyping-by-se-
quencing” (GBS), although GBS is also used to describe a specific method of reduced-rep-
resentation sequencing. This subsection emphasizes the latter approach, although many of 
the statements made apply to all GBS methods. GBS can be a method of choice in certain 
settings, particularly in de novo applications (Scheben, Batley and Edwards, 2017), such as 
for species with no standard SNP chip. GBS can in a single step both identify SNPs, many 
of which may be novel, and yield the desired genotypes. 

The principle of reduced representation GBS is the sequencing of a fraction of the 
genome in such a way that the same fraction is sequenced in all individuals. This can be 
accomplished, for instance, by hybrid-capture or size selection of fragments generated 
by restriction enzyme digestion. The fragments are then sequenced, sequence reads are 
mapped against a reference genome and alleles are called from the reads (see Figure 1). 
There is considerable variation among the various methods in terms of these steps, which 
ultimately control the number and quality of resulting markers. Fourteen different methods 
of GBS have been described (Scheben, Batley and Edwards, 2017) and new ones are con-
tinually being proposed (e.g. Rowan et al., 2017).

Calling genotypes from alleles is reliable if fragments are sequenced many times. 
Obviously, the probability of correctly calling a heterozygote increases with the depth of 
sequencing (where “depth” refers to the number of times each fragment is sequenced, on 
average): 0.000 for x = 1, 0.500 for x = 2, 0.750 for x = 3, 0.875 for x = 4, 0.938 for x = 
5 and 0.998 for x = 10. Generally, sequencing error is low, e.g. 0.01–0.001, but not zero, 
which makes genotype calling a bit more complex than schematically presented below 
(Figure 1). Available software tools account for sequencing errors (see Scheben, Batley and 
Edwards, 2017; Lou et al., 2021 and the Appendix 6).

FIGURE 1
Characterizing variation at a fragment of DNA of a diploid individual (A) by focusing  

on a specific locus (B) and repeatedly characterizing its sequence (C)

Source: Authors’ own elaboration (Gregor Gorjanc).
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Advantages and disadvantages
The GBS approach has several main advantages relative to SNP chips. First, GBS does not 
depend on a previously chosen set of markers or on the availability of whole-genome data, 
and will reveal genetic variation within any livestock or wildlife population. Consequently, 
GBS may provide more relevant markers than a commercially available SNP array. Second, 
because only the partial genome is sequenced, GBS yields novel SNPs much faster than can 
be done by WGS, and thus, for more immediate information on aspects such as MAFs and 
phylogeographic patterns within the panel of samples. Third, GBS completely avoids the AB 
(e.g. Schraiber and Akey, 2015; Simčič et al., 2015; Lou et al., 2021), except for GBS after 
hybrid capture. Fourth, users can tune GBS to their purpose and budget by choosing the 
number of sequenced fragments and the depth of sequencing (Figure 2) (see also Section 
4). As previously mentioned, the GBS approach also provides an option for less common 
species that lack commercial SNP arrays.

There are, however, also disadvantages. First, GBS generally requires purified high-mo-
lecular weight DNA. Second, unique alleles in a population can be hard to distinguish from 
sequencing artefacts, whereas presence–absence variation due to deletions or insertions 
cannot be scored reliably at low sequencing depth. Third, because the number of markers 
depends on the sample and the output consists of allele calls instead of genotype calls, GBS 
requires additional bioinformatic attention in downstream analyses. Note that these con-
siderations also apply to SNP calling on the basis of WGS assemblies. However, sequencing 
methods and tools for downstream analyses are continually improving.

FIGURE 2
Samples released from the US gene bank between 2000 and 2020 among species  

and germplasm types

Source: Authors’ own elaboration (Gregor Gorjanc).
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Implementation and applications
Several commercial providers offer continually evolving custom GBS. Interested scientists 
are recommended to use an internet search engine to identify an appropriate service 
provider. The GBS approach has been adopted actively in several scientific communities 
(e.g. Buerkle and Gompert, 2013; Scheben, Batley and Edwards, 2017; Li et al., 2021;  
Lou et al., 2021). This adoption was fuelled by a lack of genomic resources or SNP arrays 
in target species, and/or by unacceptably large AB in the available SNP arrays. GBS is less 
expensive than SNP bead arrays for genotyping a few individuals, but for high numbers of 
samples the streamlined SNP arrays become cheaper and offer the advantage of a more 
straightforward data analysis. 

Several studies have leveraged GBS for population genetics studies. For example, Dodds 
et al. (2015) and Bilton et al. (2018) accounted for sequencing depth when estimating 
relatedness and LD, respectively. Dodds et al. (2019) and Whalen, Gorjanc and Hickey 
(2019) applied GBS to parentage assignment. Gorjanc et al., 2015, 2017) and Liu (2020) 
discussed the use of GBS with genomic selection. Interestingly, Lou et al. (2021) reviewed 
a number of standard population genetic analyses, most of which were based on GBS data 
without imputation (see subsection below) and therefore had to develop specific approach-
es for standard analyses. An alternative approach is to infer genotypes from GBS allele 
calls from multiple individuals and loci, and then follow standard analyses for genotypes 
obtained with SNP arrays. 

PREPARING A WORKING MULTILOCUS DATASET
Genotyping and sampling errors can occur when performing genomic assays. The anal-
ysis of genetic data requires quality checks to identify such errors. Genotyping errors in 
SNP arrays can be due to insufficient DNA concentration, low quality of the DNA samples, 
sample contamination, poorly performing genotype probes, poor hybridization of DNA 
from very divergent populations or related species; and – in the case of WGS and GBS 
data – to low sequence coverage. Quality checks are performed at both the individual- 
and SNP-level, and guide the “filtering” or the removal of the individuals and/or SNPs. 
The most common filtering approach attempts to preserve the number of individuals 
rather than the redundancy of SNPs. However, the optimal procedure and cut-off val-
ues for discarding of data should always be evaluated according to the dataset and the 
objectives of the study.

Although the manipulation and analysis of high-throughput genomic data, and inter-
pretation of the results may require specialized bioinformatic competence (FAO, 2015), sev-
eral well-documented and freeware bioinformatic tools are available, providing user-friend-
ly tools and routines for the quality checking procedures. Among many, the following are 
the most popular and comprehensive software packages for working with genomic data: 
PLINK (Chang et al., 2015; Purcell, 2010), GWASTools (Gogarten et al., 2012), GenABEL 
(Karssen, van Duijn and Aulchenko, 2016) and King (Manichaikul et al., 2010). Appendix 8 
provides a step-by-step example of using PLINK (and R software) to perform quality checks 
and data editing.
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Merging of datasets
As mentioned previously, a substantial advantage of SNPs relative to microsatellite markers 
is the option to combine data with existing datasets based on the same SNP panel or panels 
that have many SNPs in common. Since, in livestock species, most DNA arrays are provided 
by two major companies (i.e. Illumina and Affymetrix) with considerable across firm and 
backward compatibility of new versions, this is often the case. Merging of data is not trivial, 
but differences in SNP identification codes and genomic coordinates can be harmonized 
across the datasets to be merged by using the most updated assembly information for a 
given species. Chromosomes are composed of complementary strands of DNA, and, as 
previously mentioned, opposing strands may have been genotyped between the datasets 
being merged. In such instances a “strand flip” must be undertaken to ensure proper 
merging. Such differences in strand orientation are identified by four alleles (A, C, G and 
T) recorded at a given locus, although a strict biallelic locus is generally expected. Such 
errors can be detected by PLINK during the merging operation and corrected by swapping 
A↔T and C↔G. However, different strand orientations in A/T and G/C SNPs cannot be 
detected, and it is advisable to remove all A/T and C/G SNPs if a strand flip must be carried 
out. It is also recommended that the datasets to be combined share at least one breed, to 
verify that, in the combined dataset, all animals from this breed cluster together and the 
diversity patterns are not confounded by systematic differences between the datasets that 
have been merged.

Mode of inheritance
With rare exceptions, mitochondrial DNA (mtDNA) markers are only inherited via the 
maternal lineages and markers on the male-specific part of the Y chromosome (MSY) only 
via the paternal lineages. Neither mtDNA nor the MSY participate in meiotic crossing-over, 
and both constitute a single non-recombining haplotype. As a consequence, they pro-
foundly differ from autosomal markers in terms of mutation rate, evolutionary mechanisms, 
effect of genetic events and phylogeographic diversity patterns. X-chromosomal markers 
have a biparental mode of inheritance, but nonetheless differ in several properties form 
the autosomes:

•	 They have only one copy in males, and thus a 25 percent lower effective population 
size (Ne). 

•	 Genes involved in reproduction are overrepresented on the X chromosomes 
(Vaiman, 2002).

•	 X chromosomes are more involved in meiotic drives than are autosomes, the rea-
sons for which are only partially understood (Hughes et al., 2020).

•	 X chromosomes also have a pattern of diversity that differs from the autosomal 
pattern (Wilson Sayres, 2018; da Fonseca et al., 2019). 

For poultry species, the sex chromosomes are referred to as Z and W, and females are 
the heteromorphic gender (ZW). Therefore, the points made above generally hold true, but 
for the opposite gender.

As a practical consequence for genetic diversity studies, mtDNA, MSY, sex chromosomes 
and autosomes should be analysed separately. This happens automatically if LD pruning 
is applied, since this removes all three types of SNPs with a special mode of inheritance.  
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For localization of genetic traits by GWAS (see Section 4), marker data from autosomes and 
X chromosomes can be combined. 

Missingness of data
The “missingness” of individual SNP and samples is defined as the percentage of missing 
genotypes for a given marker or individual, respectively, and is complementary to the “call-
rate” (5 percent missingness equates to a 95 percent call-rate). High proportions of SNP 
missingness can be due to a probe design inadequacy for all or a part of the samples, and, 
in the latter case, can lead to a bias in estimates of allele frequencies. A high proportion 
of missing genotypes for a sample indicates either a poor DNA quality, deviating species 
origin (e.g. Bos indicus rather than Bos taurus), or low sequence coverage for WGS- and 
GBS-based datasets.

For DNA array datasets, SNP-level filtering is typically performed first, followed by sam-
ple-level filtering, both allowing 5 percent missingness. A more refined approach can reduce 
the amount of data lost due to filtering by following a two-step approach. In the first step, 
a more relaxed threshold (such as 20 percent) to remove SNPs and samples with extremely 
high levels of missingness, followed by an additional filtering step with a more stringent 
threshold (e.g. 5 percent). Note that the SNP filtering step removes Y-chromosomal SNPs 
unless males account for at least 95 percent of the samples.

Sex discrepancy
When the sex of the animal providing the samples is known, discrepancies between the 
recorded and inferred sex may identify mislabelling of samples. Such an occurrence may 
indicate poor sample management and should be followed by a thorough check of the 
dataset and available metadata. The gender is derived by PLINK from the classical inbreed-
ing coefficient [F = (expected homozygosity - observed heterozygosity) / expected homozy-
gosity] for X-chromosomal SNPs; F > 0.8 and < 0.2 are often adequate cut-off values for 
males and females, respectively. Intermediate values may indicate either a mixed sample 
origin, or, for male samples, the presence of SNPs from the pseudoautosomal region (PAR), 
region of commonality between sex chromosomes. The PAR can be localized by comparing 
the frequency of heterozygotes across the X chromosome in males and females, and can 
be relabelled as a separate chromosome not to be used for sex assessment. It is also essen-
tial to perform the sex-check assessments in PLINK on sets of loci in approximate linkage 
equilibrium (see subsection LD below). Furthermore, even if the sex inferred from analysis 
agrees with the sex recorded in the data, the presence of Y-chromosomal genotypes in a 
sample labelled as female is another clear warning of a problem that demands attention.

Minor allele frequency (MAF)
As explained previously, the MAF for a biallelic SNP is the frequency of the least-commonly 
occurring allele at a given locus, hence MAF must be ≤0.5. The SNPs with a MAF of a few 
percentage points or less can represent true low-frequency variants but also be the result 
of genotyping errors. For this reason, it is common to retain only SNPs with MAF ≥ 0.05 
for many analyses. Alternatively, with large datasets, the threshold MAF ≥ 10 / N, based on 
the consideration that a larger sample size (N) reduces the likelihood that a small MAF has 
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resulted from genotyping errors. However, some analyses (such as GWAS, see Section 4) 
are highly affected by low-frequency variants and thus more stringent thresholds are often 
applied (e.g. requiring MAF ≥ 0.05 even for N ≤ 10 000).

The MAF is particularly affected by sampling bias and AB. If a dataset has a large 
degree of homozygosity (hence, a small MAF on average), a larger sample size is necessary 
to obtain enough SNPs passing the MAF filtering because of the low overall frequency of 
heterozygotes. The effect of AB is proportional to the degree of divergence between the 
discovery and the study populations (Helyar et al., 2011), and leads to an underestimation 
of the genetic diversity of the study population. This applies for instance to zebu cattle 
analysed by the popular arrays designed mainly for taurine cattle (Barbato et al., 2020). 
As discussed above, the AB can be mitigated somewhat by filtering loci in high LD and by 
selection of SNPs that have a high MAF in the ancestral breeds or in the wild ancestors. 

Allelic frequencies are used to calculate expected heterozygosity (He) and genetic dis-
tances between breeds. For optimizing breed comparison analyses, one must keep in mind 
that a low sample size for a given breed (< 20 animals) can lead to underestimating the He 
and thus to inflating the genetic distances to other breeds.

Hardy-Weinberg equilibrium
The Hardy–Weinberg equilibrium (HWE) implies a direct relationship between allelic fre-
quencies (p and q, with p + q = 1, in the case of a biallelic SNP) and the genotypic frequen-
cies (p2 and q2

 for the homozygotes, and 2pq for the heterozygotes), which is supposed 
to remain constant over generations. The HWE is valid for a Wright-Fisher population 
of infinite size with random mating, no selection, mutation and migration. Significant 
departure from HWE for individual SNPs can be caused by population subdivision and 
substructure (e.g. Wahlund effect) (Garnier-Géré and Chikhi, 2013), recessive lethal muta-
tions, selection, non-random mating, inbreeding and genotyping errors (Chen, Cole and 
Grond-Ginsbach, 2017). For datasets of larger populations and datasets aimed at GWAS, 
it is a common practice to explain strong deviations from HWE by genotyping error and 
remove the corresponding SNPs. However, removal of such SNP must be done judiciously, 
as such deviations may be an indicator of selection or some other real phenomenon that is 
of interest in the analysis (e.g. Pausch et al., 2015).

The HWE can be tested by the so-called exact test, which provides a P-value for the signifi-
cance of the HWE departure and is fairly robust to deviations from the theoretical assumptions. 
If the downstream analysis focuses on the identification of selection signatures (see Section 4), 
it is recommended to use a permissive HWE filtering threshold (e.g. P < 10-10) to avoid filtering 
out too many variants. In the case of GWAS applied to binary traits, it is common practice to 
use more lenient thresholds in cases (e.g. P < 10-10) than in controls (P < 10-6), because devia-
tions from HWE in such cases can be due to true genetic association with the focal trait. When 
assessing quantitative traits, stricter thresholds can be used (e.g. 10-6).

Non-random mating, which, in its most extreme form, leads to population subdivision 
(stratification into different subpopulations), is expected to cause HWE deviations across 
the whole genome, but such subdivision is commonly tested by comparing He and observed 
heterozygosity (see below) and applying model-free multivariate statistics such as PCA or 
multidimensional scaling (see Section 4).
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Heterozygosity
The observed heterozygosity (Ho) of an individual is the proportion of heterozygous gen-
otypes, that is carrying two different alleles at a given locus, preferably considering only 
autosomal loci. Within populations, individual heterozygosity tends to be variable, but val-
ues for individuals with three standard deviations (SD) above the population average may 
indicate sample contamination or crossbreds, whereas values three SD below the average 
can be caused by inbreeding. Filtering Ho outliers is particularly important when the dataset 
is supposed to be genetically homogeneous, as with data for GWAS.

For checking the genetic constitution of a population, Ho averaged across the individuals 
of a population is an indicator of the diversity of the breed, although it should be borne 
in mind that it can be influenced by AB (see above) or be influenced by recent breeding 
decisions (e.g. subpopulations of inbred individuals within a relatively genetically diverse 
breed). It is further useful to compare Ho with He, calculated on the basis of the allele fre-
quencies of the population. The Ho is generally lower than He as a consequence of sporadic 
non-random mating or sampling bias. Large differences between Ho and He indicate signif-
icant deviations from the Wright-Fisher ideal population, and, for example, the condition  
Ho > He may suggest recent population admixture or outbreeding, while Ho < He can indi-
cate population subdivision or inbreeding. Both conditions may influence analyses that 
presume a homogeneous population. The extent of inbreeding/outbreeding can be quanti-
fied as FIS = (He - Ho) / He, where FIS represents the inbreeding coefficient of the population.  
FIS is > 0 when inbreeding is present, and < 0 when heterozygosity is greater than expected, 
such as with outbreeding or crossbreeding. 

Linkage disequilibrium (LD)
SNPs are in LD if there is a non-random association of their alleles. This is to be expected 
for loci that are nearby on the same chromosome, for instance, within or proximal to the 
same gene, so that recombination between them is a rare event. LD is also normal for the 
non-recombining mtDNA and the MSY. However, high LD of well separated genomic SNPs, 
that is not compatible with the expected recombination rate (about 1 percent per 106 base 
pairs (bp) per generation), may be caused by demographic processes such as admixture 
and genetic drift or by selective processes such as “hitchhiking” or background selection 
(McVean, 2007). Occasionally LD is observed between SNPs on different chromosomes 
(expected recombination rate of 50 percent per generation), which is usually an artefact 
due to the sampling of a limited number of gametes or individuals, but may be a real phe-
nomenon resulting from epistatic effects or unknown sources of population stratification.

A consequence of LD is that nearby markers are not independent. Therefore, it is com-
mon to implement LD-based pruning procedures to retain markers that are in approximate 
linkage equilibrium and are thus largely independent. This procedure is required when an 
analytical model does not explicitly take LD into consideration (see subsections on MAF and 
relatedness). A common PLINK implementation of LD-based pruning calculates correlation 
coefficients (r2) within sliding windows across the genome, and removes one of each pair 
of SNPs having LD greater than a given threshold. Typically, markers are selected in 2 Mbp 
windows that shift 0.2 Mbp forward (~10 percent of the window size) at each iteration 
while applying a LD threshold corresponding to r2 = 0.2. This method could, however, 
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induce additional bias if the LD removed is meaningful for a particular population. If the 
approximate average size of LD blocks is known for the species/breed of interests, another 
method to remove LD is to randomly select markers at a distance that is greater than the 
average level of LD specific to the breed. This method would then allow for the detection 
of extended LD that may be due to selective breeding or other biologically important char-
acteristics of the population.

LD-based pruning can also be used for data size reduction, as it removes redundant SNPs 
by selecting only those markers that are representative of the genetic haplotype blocks. Under 
this scenario it is possible to apply more conservative LD thresholds (e.g. r2 ≥ 0.5), which will 
remove the most highly correlated loci while preserving moderately correlated SNPs (e.g. due 
to low-frequency variants). Such an approach will retain the underlying genetic structure of 
the dataset while reducing the computational burden. 

Note that LD-based pruning removes mtDNA and Y-chromosomal SNPs. It should be 
carried out after removal of the SNPs with low call rates and bad-scoring or contaminat-
ed samples. LD-based pruning is beneficial for calculation of genetic distances, PCA or 
model-based ancestry analysis (e.g. as implemented in the popular software Admixture 
(Alexander, Novembre and Lange, 2009), but not for haplotype-based studies, such as 
runs of homozygosity (ROH) and local ancestry analyses. An additional benefit of LD-based 
pruning is alleviating the AB in DNA array datasets (see above) (Malomane et al., 2018). 
These various types of analyses are explained in greater detail in Section 4.

Relatedness
Relatedness or kinship indicates the similarity of a pair of individuals due to common ances-
try. Checking the pattern of kinship is essential for several reasons:

•	 Individuals may be found to be duplicated or be identical twins.
•	 The presence of highly related individuals introduces a bias towards a specific fami-

ly in the dataset or reduces the statistical power of GWAS. It may be avoided during 
sampling by using pedigree information or a well-considered sampling scheme, but 
this is not always feasible.

•	 More in general, kinship may lead to population stratification, which confounds 
several analyses that assume a homogeneous population. For instance, it may easily 
cause false positives in single-gene association studies.

•	 Outlier animals with a much lower kinship with the other individuals than the 
population average should generally be excluded from analyses, as they are likely 
to be crossbreds or mislabelled.

•	 If genetic distances between animals within the same breed are practically the 
same as between animals from different breeds, genetic clusters will no longer cor-
respond to breeds. As a possible consequence, breed definitions may be reconsid-
ered, especially if the lack of breed-level differentiation is due to uncontrolled gene 
flow between local populations kept under an extensive management regime.

A common method for the identification of related individuals is to compute the pair-
wise proportion of shared alleles inherited from a common ancestor – identity by descent 
(IBD) – across all individuals. The magnitude of the resulting IBD score then reflects the relat-
edness of two individuals. This classic approach requires approximate linkage equilibrium 
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(see the subsection on LD) and should be performed on autosomal markers. It relies strongly 
on the assumption of a homogeneous population structure. A matrix of IBD scores may be 
visualized by plotting the scores as a heat map.

A robust and efficient algorithm for inferring relatedness of individuals has been imple-
mented in the software KING (Manichaikul et al., 2010), which has been recently included 
in PLINK 2.0. The KING algorithm does not require LD among markers or a homogenous 
population structure. The KING relatedness coefficients are scaled to correspond to kinship 
coefficients (which are 0.5 ×  the relationships coefficients): monozygotic twins/duplicate 
samples have kinship = 0.5; first-degree relations (parent-offspring, full siblings) have kin-
ship = 0.25; etc. As a cut-off value, the geometric mean of the values corresponding to two 
degrees of kinship is used (e.g. a kinship coefficient > 0.354, which is the geometric mean 
of 0.5 and 0.25) to identify monozygotic twins and duplicate samples.

Alternatively, a neighbour-joining (NJ) phylogram of allele sharing distances between 
individuals can be generated to visualize identical samples, variable kinship, outliers, 
breed-level differentiation and, via the lengths of the terminal branches, the effect of 
genetic isolation on the diversity within breeds (Cardoso et al., 2018). Such an analysis will 
also show the clustering of closely related breeds. For more distant breed relationships, 
genetic distances between breeds instead of between individuals is more suitable.

Identical individuals should be removed from the dataset, and, if possible, also those 
individuals with first or second-degree kinships (this is particularly important for GWAS), 
by removing the individual with the lowest mean genotype call rate from a closely related 
pair. Because one individual can be involved in several pairs, PLINK 2.0 has implemented 
an algorithm that maximizes sample size while pruning for relatedness. For calculation of 
relatedness on the basis of GBS datasets, see Dodds et al. (2015).

Sample size
For diversity studies involving several breeds, availability of samples may be a limiting factor. 
Having a few samples of an interesting breed is still valuable, but its heterozygosity may be 
underestimated. Sample size does not have a large influence on the topology of phylogenetic 
networks or trees, but empirical evidence suggests that having less than 20 animals inflates 
the genetic distance to other breeds, as mentioned previously. Moreover, 20 animals may 
not be sufficient to detect low levels of breed admixture or for obtaining meaningful GWAS 
results (Ball, 2013).

On the other hand, more is not always better, especially when only some breeds have 
more data. When comparing multiple populations, breeds that are overrepresented may 
very well distort the results by dominating the principal components and the inference of 
clusters, respectively, especially if these breeds are also inbred. Hence, for these analyses, it 
is recommended to reduce the number of samples from overrepresented breeds to obtain 
a dataset with a more balanced representation of breeds. 

WHOLE-GENOME SEQUENCING
Genotyping arrays are limited to assessing variants that have been preselected and are 
adaptable to array genotyping (generally, only SNP), such that the same sample may have 
to be run with multiple different assays to achieve desired goal(s) or to properly assess 
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and account for AB. In contrast, WGS has the advantages that variants across the entire 
target genome are assessed, and it is possible to identify all types of variants including SNP, 
indels (insertions and deletions), CNV, and structural variation (SV) like inversions or large 
deletions. The success of applying WGS for genome characterization depends on several 
factors including the type and depth of sequencing used and the analysis method(s). Here, 
we present some background on the currently available approaches to using WGS for 
characterizing variation independent of the target species. Characteristics of the population 
(breed or species) such as Ne, or polyploid genomes, may affect the decision on the best 
approach to be applied for data generation and analysis.

De novo assembly
The most comprehensive evaluation of a genome comes from an independent, haplotype-re-
solved de novo whole genome assembly of the animal. This is the most expensive and 
technically demanding approach, although the cost has dropped by more than four orders 
of magnitude since the first livestock genomes were assembled years ago, and the quality 
of the assemblies has dramatically increased. The basis of this improvement is the advent of 
long-read sequencing (LRS) platforms, each of which has particular advantages and draw-
backs (Amarasinghe et al., 2020; Logsdon, Vollger and Eichler, 2020). The LRS technology is 
developing rapidly, but the next paragraphs provide a brief overview of the state of the art 
and most common technologies. Amarasinghe et al. (2020) provides a recent review. 

The Pacific Biosciences (2015) platform, often referred to as “PacBio,” can operate in 
two “modes,” one in which read length is maximized at the expense of read accuracy, and 
one with relatively shorter reads where read accuracy is maximized (the “HiFi” mode). The 
former produces contiguous assemblies at lower cost but with higher error rate, whereas 
the latter produces very high accuracy but somewhat less contiguous assemblies due to the 
shorter read length. The Oxford Nanopore Technologies (2008) sequencing platforms excel 
at generating extremely long reads that are very useful for assembling repetitive or duplicat-
ed regions of the genome, but require relatively large amounts of input DNA and therefore 
substantial sample volume. Both LRS platforms are dependent on availability of suitable 
DNA template that consists mainly of very long fragments (10s to 100s of kb) of undam-
aged DNA. The characteristics of the two currently available LRS platforms differ so much 
that a single extraction method has yet to be formulated that is ideal for both platforms. 

De novo assemblies of genomes based on short-read sequencing (SRS) (Bentley et al., 
2008; Margulies et al., 2005; McKernan et al., 2009; Rothberg et al., 2011) are typically a 
less expensive option relative to LRS, and can be suitable for population level analyses and 
transcriptomics. However, their accuracy (in terms of the lengths of contiguous genomic 
regions) is orders of magnitude lower than with LRS, and all analysis of repetitive content 
and gene families must be done with consideration of their deficits. For these reasons, 
LRS has mostly replaced SRS for de novo assembly of genomes. There are approaches to 
improve SRS assemblies through large insert size libraries, or hybrid approaches that com-
bine SRS and LRS. The most effective hybrid approach is linked-read technology (Wang 
et al., 2019; Zhang et al., 2017; Zheng et al., 2016). In linked-reads, a library production 
technology is applied that adds barcodes to short fragments derived from a single, longer 
template molecule. Millions of these independent “micro-libraries” with different barcodes 
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are then sequenced on standard short-read platforms. Post-sequencing, the barcode infor-
mation is used to partially reconstruct the longer DNA molecule and provides longer-range 
assembly continuity compared to standard, whole-genome SRS.

All platforms are limited in their ability to assemble genomic regions that undergo 
somatic cell rearrangements in blood cells (immune gene complexes like the T-cell receptor 
or immunoglobulin loci) if blood is the source of DNA.

Sequence data is first assembled into “contigs,” which are stretches of DNA sequence 
without gaps. The SRS assemblies have N50 size (the length of the contig where the sum of 
all longer contigs is > 50 percent of the total assembly size) in the range of 100 kb, while 
the contigs that can be created from LRS data can have N50 size over 70 megabases (Mb), 
or 700x as long. Generally, the genome sequence depth target is ≥ 100x for SRS and in the 
range of 50x for LRS to provide a quality assembly; however, if a haplotype-resolved assembly 
is desired, then a greater depth is helpful. Also, if using the HiFi mode of sequencing, cover-
age can be as low as 20x, although haplotype-resolution is steadily improved up to 40x or so. 
Contigs from LRS need to be “polished” (i.e., checked and corrected) to increase accuracy, 
with SRS data being useful for this step (e.g. Zimin and Salzberg, 2020). A second commonly 
used approach is “trio-binning, which utilizes divergence between two parental species or 
breeds and LRS of an F1 to create two, almost perfect haploid assemblies (Low et al., 2020).

Y chromosomes remain challenging to assemble due to their highly repetitive nature. 
Even with LRS they often remain highly fragmented. Methods for the identification of 
these contigs include using the normalized ratio of female to male alignments (Hall et al., 
2013), and k-mer based approaches (Carvalho and Clark, 2013; Rangavittal et al., 2019). 
Prior to polishing an assembly, it’s important to make sure the mitochondrial genome 
has been assembled. Failure to do so can result in over-polishing of nuclear insertions of 
mitochondrial sequence (NUMTs) which can lead to difficulties in identifying mitochondrial 
variants. There are methods to assemble mitochondrial genomes from both SRS and LRS 
(Al-Nakeeb, Petersen and Sicheritz-Pontén, 2017; Dierckxsens, Mardulyn and Smits, 2017; 
Formenti et al., 2020; Hahn, Bachmann and Chevreux, 2013; Meng et al., 2019). Polished 
contigs generated from LRS are sufficient to detect the majority of SNP, indels, CNV and SV 
in the genome by alignment to reference genome(s). Ideally, a breed- or population-spe-
cific reference or a pangenome representation would be used for such alignments, when 
available, to maximize mapping accuracy and variant detection. Alternatively, a full de novo 
assembly can be achieved by adding scaffolding data, either optical mapping (Hastie et al., 
2013; Nagarajan, Read and Pop, 2008) or chromatin conformation contact mapping (Hi-C) 
(Burton et al., 2013; Kaplan and Dekker, 2013). 

Resequencing
De novo assembly will nearly always yield the most detailed information about a single 
genome; however, the cost and computational effort required is still impractical for analysis 
of multiple animals and populations in most circumstances. Resequencing, which involves 
SRS or LRS at much lower coverage than necessary for assembly and depends on mapping 
the reads to a reference genome to detect variants, is more amenable to application in 
larger populations. The goals of resequencing and the platform chosen will determine 
the depth of sequencing required. For discovery of SNP and indels, the high accuracy 
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and low cost of SRS makes it the common choice. Tenfold mapped genome coverage is 
typically recommended as the minimum depth, and usually requires about 12-13x raw 
depth depending on platform. Extensive testing indicates that this is sufficient for accurate 
genotyping of ≥ 95 percent of SNPs compared to very high coverage sequencing (≥ 30x 
coverage). At a low genome depth (< 8x), some heterozygous genotypes will be scored 
as homozygous genotypes and some sequencing errors will be recorded as heterozygous 
genotypes (Nielsen et al., 2012), thus distorting the estimates of allele frequencies and 
genetic diversity. To address this problem, a genotype-likelihood based method has been 
developed to estimate nucleotide diversity for low sequencing coverage (Nielsen et al., 
2012). Resequencing by SRS can also accurately detect small (1–10 base) indels, but much 
higher coverage is needed to predict larger indels or CNVs, and some structural variants 
are very difficult to detect with only SRS data. LRS can also produce quality SNP and indel 
calls, but except for HiFi, sequencing will need to be done to a greater depth, around 20x. 
LRS excels when it comes to CNV and SV. With the same 10x coverage required for SNP 
and indels, HiFi data will yield many high quality CNV and SV calls. Regular LRS and SRS 
will benefit from a minimum of 20x coverage. LRS can call these larger variants with much 
greater frequency and accuracy than SRS, and can capture larger variants than HiFi.

Prior to the advent of haplotype-resolved assemblies, it was common to choose female 
reference animals due to the drop in coverage associated with sequencing the heterolo-
gous portions of the sex chromosomes in males. When the sequenced animal is a male and 
the reference has no Y chromosome to align to, identifying variants becomes more chal-
lenging. In this case, reads that do not map to the reference can be collected and aligned 
to an alternate dataset representing the Y chromosome. This can be the Y chromosome of 
a closely related animal, or a collection of Y chromosome genes.

The success and accuracy of WGS for detection of variation is also highly dependent on 
the reference genome to which the sequencing reads are mapped. Currently, most studies 
use a single representative assembly agreed upon by the community of scientists working 
with the species in question, which provides a common basis for comparison among stud-
ies. However, many livestock species are now seeing high quality assemblies of multiple 
breeds emerging, and studies comparing the success of using a breed-specific reference 
as opposed to “the reference” assembly have not been completed. Early results suggest 
that variant detection will be improved by breed-specific references, but at the cost of easy 
cross-study comparison (Crysnanto and Pausch, 2020). Recent efforts in cattle have focused 
on the creation of a “pangenome” reference including all genomic segments globally pres-
ent among breeds, as a solution to this problem (Heaton et al., 2021).

Preparing a working multilocus dataset from genome resequencing
Regardless of the approach used (LRS or SRS), resequencing of an animal’s genome initially 
yields a large quantity of individually sequenced DNA reads. These reads require substantial 
processing to finally provide a dataset of genetic variants positions on individual chromo-
somes. Figure 3 is a flow chart that illustrates the process to be taken to transform raw 
SRS data from a sample of genomic DNA into a dataset of genetic variants. For each step, 
the commonly used data formats and software modules are indicated. Other options for 
formats and software exist and may be used depending on personal preference.
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Many sequencing platforms output the raw sequence data for individual reads into a 
format called FASTQ. The FASTQ format is text based and includes a sequence identifier, 
the sequence and a quality score. The raw sequence reads then undergo quality control and 
preprocessing. FASTQC (Andrews, 2010) is a software that undertakes a general overview 
to help identify problems in the sequencing process. QC3 (Guo et al., 2014) is a software 
with more features than FASTQC, such as identification of individual “good” and “bad” 
reads. PRINSEQ (Schmieder and Edwards, 2011) can perform both quality control and pre-
processing, the next step in data preparation. Preprocessing often performs filtering and 
trimming of raw sequences. Individual sequences may be filtered based on quality based 
on parameters such as quality score, read length and content of guanine and cytosine 
nucleotides. Trimming removes sequence that corresponds to DNA adapters that may be 
incorporated during the sequencing process. Preprocessing improves the computing perfor-
mance and accuracy of subsequent steps. In addition to PRINSEQ, Cutadapt (Martin, 2011), 
Trimmomatic (Bolger, Lhose and Usadel, 2014) and FastProNGS (Liu et al., 2019) are other 
software options for preparation of genome sequence data.

Following these steps, the individual reads are ready to be aligned to the refer-
ence genome. Several software programmes are available for this step, including BWA  
(Li and Durbin, 2009); Bowtie2 (Langmead and Salzberg, 2012); Novoalign (Novocraft 
Technologies, 2020) and GMAP (Wu and Watanabe, 2005). The alignment process yields 
more information for each read (e.g. chromosomal location) and thus requires a new out-
put data format. The basic format is called SAM for “sequence alignment/map format,” 
but given the large amount of data, the binary format of these data, “BAM” is more 
commonly used. 

Finally, it is generally recommended to check and realign the sequence data due to 
indels and base quality. The GATK software (Van der Auwera and O’Connor, 2020) can be 
used for this task. This leads to the final step, variant calling. This step identifies the genom-
ic locations of differences from the reference sequence. As this results in new information, 
another data format is used, VCF format, for “Variant Call Format.” GATK can be used for 
variant calling, along with other software, including SAMtools (Li et al., 2009). The resulting 
data serves as the basis for further analyses.

As is the case for SNP assays, the resulting dataset should be subject to quality control. 
In particular, checks for the estimated level of relatedness of animals is important, both for 
the identification of putative duplicate samples and for possible removal of closely related 
animals that may distort the analysis. The quality control software described in Appendix 6 
are generally applicable to sequence as well as SNP data.
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FIGURE 3
Steps to be taken in the processing of a sample of genomic DNA  

into a dataset of genetic variants

Note: The white boxes indicate the material (DNA sample or data), whereas the shaded boxes indicate the action undertaken. 
Common software for each action is shown in parentheses

Source: adapted from Carter, T.C. & He, M.M. 2016. Challenges of identifying clinically actionable genetic variants for 
precision medicine. Journal of Healthcare Engineering, 2016: 3617572. https://doi.org/10.1155/2016/3617572
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GENOTYPE IMPUTATION
Imputation: filling up missing values
Missing value imputation is the name given to the process of predicting incomplete val-
ues in a set of data. In many instances, missing values cannot be processed in an analysis 
and thus should be either removed or replaced by a guess beforehand. Although the first 
approach is simpler (e.g. the missing data could be handled by ignoring the missing infor-
mation during computations), the second approach may help retain more statistical power 
in the analysis since it attempts to minimize data loss. 

Imputation consists of taking advantage of correlations between variables in order to 
fill up the empty data. This approach involves the use of prediction methods adapted from 
statistics and machine learning, or even, use of deterministic approaches based on heuris-
tics. As for any type of prediction, the imputation of missing values comes with uncertainty, 
and the accuracy of that prediction is dependent on several factors that are inherent to 
the data.

The number of errors that can be tolerated in an imputation procedure is dependent 
on the missingness rate. If a data set contains very few missing values, imputation with 
low accuracy could be performed with little impact on subsequent analyses, since the small 
number of affected values would be diluted over the rest of the data. This is frequently 
referred to as “minor imputation.” Conversely, if the number of missing values to be 
imputed is large, accuracy must be high in order to avoid the “garbage in, garbage out” 
effect - that is, poor quality input leading to faulty output.

If high missingness rates suggest poor quality data, it’s logical to question whether 
imputing the subsequent large numbers of missing values will be of value. However, in spe-
cific situations, large numbers of missing data are not caused by systematic errors, but are 
rather deliberately planned during experimental design. It may be logical to “plan” to have 
missing data if a smaller subset of data can predict the missing data with a high accuracy, 
and at a substantially decreased cost. Genomic data are a logical target for imputation, 
because DNA markers are inherited in linear sequences on chromosomes that remain intact 
from generation to generation (if recombination does not occur). Because of this, having 
data for the first and last nucleotide in a DNA sequence often allows accurate prediction 
of the entire DNA sequence between those nucleotides, based on full genome sequences 
of genetically related animals.

In a WGS experiment, for example, millions of variants are detected across samples. 
Despite drastic reductions in sequencing costs in the past decades, sequencing a whole 
genome (10x coverage depth) may still cost from USD 300 to more than USD 1  000, 
depending on one’s location, the facilities and commercial providers available. In parallel, 
microarray technologies have matured substantially, making it possible to generate reliable 
data for a subset of these variants in a cost-effective manner. As discussed previously, the 
number of variants in these microarrays typically ranges from tens to hundreds of thou-
sands. This is substantial data, but still a tiny fraction of the overall number of variants that 
could be captured by WGS. Therefore, one may design an experiment where a smaller num-
ber of animals have their whole genome sequenced, thus generating a reference panel of 
millions of variants. In turn, this reference panel is used as a guide to impute the bulk of the 
data that was genotyped using a microarray or by low-depth sequencing (Li et al., 2021). 
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The same rationale can be applied in imputing genotypes between microarrays, where a 
low-density panel (LDP) of markers is imputed to a high-density panel (HDP), or even to a 
full genomic sequence.

Imputation workflow
Genotype imputation is a straightforward procedure, albeit the mathematical and algo-
rithmic mechanics behind it can be rather complex. First, the HDP (or WGS data) and LDP 
are selected such that most – if not all – of the variants in the LDP are included in the 
HDP. Second, a set of animals is genotyped in the HDP in order to compose the reference 
panel. Third, animals to be imputed are genotyped in the LDP. Fourth, data quality control 
is applied to both the HDP and LDP sets. Finally, LDP data is imputed to the HDP using one 
of many methods available for genotype imputation.

Building a reference haplotype library
The selection of animals to be included in the reference panel must be optimized for 
improved imputation performance. If no genotypic data is available, one can use pedigree 
relationships to select key ancestors capturing a large proportion of the genetic variation in 
the population (Goddard and Hayes, 2009). Otherwise, reference animals could be select-
ed based on the LDP data such that haplotype diversity is maximized. This is achieved by 
iteratively selecting individuals carrying large numbers of high frequency haplotypes (Butty 
et al., 2019). Of note, if high imputation accuracy must be achieved for low frequency 
variants, selection of animals carrying rare haplotypes should also be considered (Bickhart 
et al., 2016).

Imputation methods
Genotype imputation is divided into family-based and population-based methods. In the 
first, haplotypes from close relatives, typically identified via pedigree data, are used to 
impute the unobserved genotypes of LDP samples. In the second, pairs of individuals are 
assumed to share a common ancestor, such that LDP samples are interpreted as mosaics 
of haplotypes that are present in the HDP samples. Furthermore, there are methods that 
take advantage of both paradigms in order to achieve improved performance. Importantly, 
some methods require genotypes to be phased (i.e., the parental haplotypes are separated) 
before imputation, while most phasing algorithms perform minor imputation on the fly.

Imputation of GBS datasets
The availability of GBS and other genotyping platforms has created the need for multi-
ple types of imputation (see Figure 4). Imputation of genome-wide data is a large and a 
fast-evolving field, and is particularly suitable for populations with a known pedigree and a 
small number of parents genotyped by routine SNP array genotyping. For such populations, 
GBS strategies have been designed that enable the imputation of whole-genome sequenc-
es in hundreds of thousands of individuals (Ros-Freixedes et al., 2020a, 2020b). Whalen  
et al. (2018) and Whalen, Gorjanc and Hickey (2020) have developed methods, implement-
ed in the programs AlphaPeel and AlphaFam, that quickly and accurately calls genotypes, 
carries out phasing and imputes whole-genome sequence data of any sequencing depth 
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in pedigrees. GBS data can also be imputed without pedigrees by using software such 
as Beagle (Browning, B. and Browning, S., 2016); Stitch (Davies et al., 2016); and Glimpse 
(Rubinacci et al., 2021). Whereas the imputation of SNP array datasets to a higher density 
or to a WGS is at the expense of accuracy, imputation of GBS datasets improves the accu-
racy of genotypes relative to those derived from low-depth datasets, which can have some 
inaccuracies due to missed alleles (see Figure 4B, Figure 4C and Figure 4D).

The decision on imputation
Imputation of data can be attractive due to its potential to decrease costs, but accuracy 
will be sacrificed. When making the decision to impute data, the main factors to consider 
are the price difference between the low-density genotyping method and the high-density 
approach, and the ramifications of possible errors. The accuracy of imputation will also 
rely heavily on the population to which it is applied. Accuracy is increased when a large 

FIGURE 4
Strategies to increase volume of genomic data per unit of cost are indicated by arrows –  

to enable generating genomic data in the first place or genotyping more individuals  
at higher densities: (A) reduction of the depth in genotyping-by-sequencing; (B) imputation  

from low-density to high-density SNP arrays; (C) imputation from low-density and low-depth  
to high-density and high-depth in genotyping-by-sequencing; and (D) imputation  

to whole-genome sequence 

Source: Authors’ own elaboration (Gregor Gorjanc).
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amount of reference data is available, and when the animals making up the reference 
data are generally more closely related to the sample of animals to which imputation is to 
be applied. Accuracy of imputation is also increased by greater LD between the loci with 
known genotypes and the loci to be imputed. Increased mean LD of the breed will also 
increase imputation accuracy. For a small group of animals from one or more local breeds 
being genomically characterized for the first time, the conditions for imputation will gener-
ally not be favourable. Imputation may however be quite attractive for further studies (such 
as GWAS) for a well-characterized population. 
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This section will describe how genetic and genomic information can be used to describe 
patterns (such as genetic diversity, differentiation, classification, and genetic clines) or to 
infer historical processes (expansions, contractions, admixture and gene flow) affecting ani-
mal genetic diversity. In the first case, one can quantify how genetic diversity changes per 
individual, location or environment or by domestication. The second group of approaches 
aims to identify, quantify and determine the date of ancient demographic events, possibly 
including direct or indirect selection acting on specific genomic regions. The principles 
and limits of several methods that have become available in the last couple of decades 
are noted. This section provides the underlying genetic theory behind the most common 
analyses undertaken for genomic characterization, and describes the methods used. The 
seminal research associated with each approach is cited. This section is complemented by 
Appendix 9, which provides a summary of the main steps and analyses that are frequently 
undertaken in genomic characterization, and provides examples of the commonly used 
software for each step.

Developments from the genomics era allow novel options to address previously unfath-
omable questions with increasingly sophisticated methods, including modelling. In some 
cases, the resulting patterns can only be interpreted by understanding the underlying 
models and processes. In addition, the analysis of patterns and processes should be inte-
grated. For instance, most available approaches to identify selection typically make strong 
assumptions about the demographic history that generate “neutral” patterns, while 
methods reconstructing demographic events often ignore selection. Inferring selection 
and demography simultaneously, in order to explain spatial patterns, is one of the greatest 
challenges of evolutionary genomics. 

ASSESSMENT OF GENOMIC VARIATION WITHIN POPULATIONS
Measures of genetic diversity
Local well-adapted breeds are considered to be reservoirs of genetic diversity that are recog-
nized to contribute to future traits of interest (Bruford et al., 2015; Groeneveld et al., 2010). 
Assessment of the within-breed component of genomic variation is essential for the effective 
management of breeds (Boettcher et al., 2010; Caballero et al., 2010; Ginja et al., 2013; 
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Lenstra et al., 2012; Ruane, 2000; Toro and Caballero, 2005; Toro, Fernandez and Caballero, 
2009). Assessment allows for monitoring, on one hand, the effect of isolation on the genetic 
diversity and the ensuing risk of inbreeding depression, and on the other hand, the effect of 
crossbreeding on the genetic constitution of breeds. In addition, a comparison of the diversity 
of domestic and wild populations, and the geographic pattern of within-bred diversity may 
reveal the serial population bottlenecks that occurred in the past in association with domes-
tication and migration, respectively. 

The genetic diversity can be quantified via the observed (Ho) and expected (He) hete-
rozygosities, nucleotide diversity (π) and effective population size (Ne, see below). The Ho 

is based on the actual distribution of genotypes, whereas He is based on allele frequencies 
(Nei, 1973; 1978). Both of these measures are easily obtained from datasets of genetic 
markers. For nucleotide sequence data, the estimate of π gives the average number of 
nucleotide differences per site between two DNA sequences chosen randomly from the 
studied population (Nei and Li, 1979), and is equivalent to Ho if all nucleotides are consid-
ered as loci. The parameter Ne represents the number of reproducing individuals given a 
number of conditions (see subsection on “Effective population size” that appears later in 
this document). 

Inbreeding and runs of homozygosity 
Inbreeding results from the mating of related individuals, and it is estimated by the prob-
ability (F) that two alleles at a locus are identical. Classically, inbreeding was calculated 
using pedigree records, but genomic data and Ho and He values allow for a more accurate 
quantification of inbreeding without using pedigree data (Curik, Ferenčaković and Sölkner, 
2014; Druet and Gautier, 2017; Howrigan, Simonson and Keller, 2011; Purfield et al., 
2012). Inbreeding increases the homozygosity in individuals and thus decreases Ho, but it 
does not change He based on the allele frequencies, resulting in a heterozygote deficit and 
a departure from the Hardy-Weinberg equilibrium (HWE) of homozygous and heterozygous 
genotypes. Thus, Wright’s F-statistics based on comparing Ho and He can be used to infer 
inbreeding (FIS) from molecular data (see Box 6 for more details on F-statistics). Because 
FIS is insensitive to inbreeding in more ancient generations, the genomic coverage by runs 
of homozygosities (ROHs) has become a commonly used measure for inbreeding if single 
nucleotide polymorphism (SNP) and whole-genome sequencing (WGS) data are available. 

Inferring the frequency and length of ROHs in the genomes of farm animals helps 
to understand population histories including the occurrence of bottlenecks, estimate 
inbreeding and identify signatures of selection (Bruford et al., 2015; Ceballos et al., 2018; 
Meyermans et al., 2020; Peripolli et al., 2017). For example, long ROH segments suggest 
recent inbreeding (consanguinity) and low genetic diversity. This has been observed for 
Holstein-Friesian cattle (Doekes et al., 2019; Peripolli et al., 2017; Purfield et al., 2012; 
Upadhyay et al., 2019) and is possibly associated with deleterious homozygous variants 
(Pryce et al., 2014). In contrast, relatively many short ROHs with only a few long ROHs 
indicate a reduced population size in the past and little recent inbreeding, as found for 
wild boars (Peripolli et al., 2017). Conversely, hybridization reduces the ROH coverage and 
increases genetic diversity, as in cattle of admixed taurine–zebu ancestry (Kim et al., 2017; 
Purfield et al., 2012). 
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BOX 6
F-statistics

Wright’s1 fixation indices can be defined in at 
least three hierarchical levels that measure the 
probability of two randomly sampled alleles 
being the same in a set of subpopulations (e.g. 
farms) that together form a population (e.g. 
breed). For instance, the probability of sam-
pling the same allele twice in a subpopulation 
(a measure or inbreeding) can be obtained 
from the difference between the average Ho 
of the individuals in the subpopulation (Ho) 
and the HWE expectation of the heterozygos-
ity for the subpopulation (He):

IS = − = 1 −  . 

FIS measures deviations in random mating with-
in a subpopulation from one generation to 
the next, with negative values (minimum is -1) 
indicating an excess of heterozygotes in the 
subpopulation, while positive values (maximum 
is +1) indicate a deficit of heterozygotes. It is 
worth noting, that in a subpopulation deviating 
from HWE, a single generation of random mat-
ing would restore the HWE proportions, render-
ing FIS equal to zero. Similarly, the correlation 
between allele frequencies in a pair of subpop-
ulations can be expressed as the difference in 
the average He of the two subpopulations (He) 
and the expected heterozygosity estimated for 
the two subpopulations together (HT, with HT = 
2p(1 − p) and p being the average frequency of 
one of the two alleles in a biallelic locus): 

ST = − = 1 − . 

FST varies between 0 (indicating no 
differences in allelic frequencies between the 
two subpopulation) and 1 (indicating that the 
allelic frequencies in the two subpopulations 
are completely different), with the latter 
indicating that each of the two populations 
is fixed for a different allele, thus, within 
population, diversity must be zero. FST was 
originally defined as a measure of fixation, 
but it is often seen as a measure of genetic 
differentiation, and some authors even use it 
as a measurement of divergence that works 
like a genetic distance. In practice, it cannot be 
used as a distance since it has a maximum value 
of 1, however, Reynolds, Weir and Cockerham2 
suggested a distance measure that can be 

seen as measuring drift accumulating between 
populations in the absence of mutations 
contributing new genetic variation to the 
population. For small FST values, Reynolds 
distance is approximately the same as FST and 
linearly increases with time since separation.2,3

Lastly, the probability of sampling the 
same allele twice can also be obtained for two 
samples randomly collected from the total 
population (i.e. ignoring the breakdown of 
groups of samples in subpopulations). FIT thus 
measures deviations between the average Ho 
across all individuals in the population (Ho) 
and the HWE expected heterozygosity for the 
population (HT): 

IT = − = 1 − . 

As for FIS, FIT varies from -1 to +1, with 
the obtained value representing the deviation 
from HWE expected genotypic frequencies 
due to non-random mating and divergence 
in allele frequencies between subpopulations. 
The three fixation indices shown above relate 
to each other by following: 1 – FIT = (1 – FST) × 
(1 – FIS). This relationship enables for addition-
al hierarchical levels to be included as required 
by the study design, e.g. should there be col-
onies within subpopulations, the relationship 
between the fixation indices would become: 
1 – FIT = (1 – FST) × (1 – FIS) × (1 – FIC) × (1 – FCS), 
with the corresponding FIC and FCS being: 

IC =  − = 1 − , and 
 

CS =  − = 1 −  ,  

with HC being the HWE expected hetero-
zygosity for the colony, and with FIC varying 
between -1 and +1, while FCS varies between 
0 and 1.

1 �Wright, S. 1951. The genetical structure of populations. 

Annals of Eugenics, 15(1): 323–354.  

https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
2 �Reynolds, J., Weir, B.S. & Cockerham, C.C. 1983, 

Estimation of the coancestry coefficient: basis for a 

short-term genetic distance. Genetics, 105(3): 767–779. 

https://doi.org/10.1093/genetics/105.3.767
3 �Weir, B.S. & Cockerham, C.C. 1984. Estimating 

F-statistics for the analysis of population structure. 

Evolution, 38(6): 1358–1370.  

https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
https://doi.org/10.1093/genetics/105.3.767
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
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A high frequency of ROHs detected around a specific locus in several individuals can be 
indicative of recent positive selection (Curik, Ferenčaković and Sölkner, 2014; Zhang et al., 
2015). ROHs fixed in a population indicate a selective sweep by rapid selection for a bene-
ficial mutation. However, appropriate analyses and demographic modelling are needed to 
disentangle the processes behind specific genomic patterns and the associated parameters 
(MacLeod et al., 2013) (see subsections below on “genetic distances among breeds”, and 
“reconstruction of population history and demographic modelling”).

Effective population size
The effective size of a population (Ne) corresponds to the number of individuals in an 
idealized Wright-Fisher population (i.e. reproducing with random mating, even sex ratio 
and non-overlapping generations) that would become inbred or lose diversity at the same 
rate as this population (Frankham et al., 2002). The concept of Ne is central to population 
genetics, as it quantifies genetic drift and allows for comparisons across species or popu-
lations, but it is difficult to estimate. The census size of a population and the number of 
breeding animals (Nb) are usually larger than Ne, because actual populations do not follow 
the assumptions of an idealized population. Non-random mating and uneven sex-ratios 
are common in domestic animal populations that are under strong artificial selection, espe-
cially with the use of reproductive biotechnologies, and may also result from admixture 
events. Thus, Ne can be small even for a large population, and through fixation of alleles, it 
implies loss of genetic variability, fast genetic drift, a high level of inbreeding and possibly 
decreased viability (Kristensen et al., 2015; Peripolli et al., 2017). 

Estimation of Ne depends substantially on the indicators of genetic diversity considered, 
such as inbreeding, and on variation of genetic diversity through time. For instance, from 
a dataset of sequences Ne can be estimated as θ/µ (where θ is the population mutation 
rate estimated on the basis of the number of segregating sites, and µ is the individual 
mutation rate). Whole-genome data provide the least biased estimation of diversity (and 
thus Ne). Linkage disequilibrium (LD) based methods can account for sample size, mutation, 
phasing (assigning alleles to the paternal and maternal chromosomes), and recombination 
rate (Barbato et al., 2015; Orozco-terWengel et al., 2015). ROH may also serve as a robust 
genome-scale Ne estimator, although interpretation and scaling depend on local recombi-
nation (Bruford et al., 2015). 

However, computed values should be treated as estimates that are prone to biases, 
especially if the population is subdivided. For instance, Wakeley (1999) has shown that a 
structured population in which all subpopulations increase in size, while exchanging more 
migrants, will exhibit a signal of decrease of Ne despite the increase in the actual size of the 
population. Similar results were obtained by Mazet et al. (2016) for genomic data from sin-
gle individuals analysed using the pairwise sequentially Markov coalescent (PSMC) method 
(see below). If Ne is used for translating various measures of genetic diversity within a spe-
cific model, it should be interpreted within that model. Various complex coalescent-based 
methods have been developed, that allow to infer the population demography over time 
including the variation of Ne or connectivity, such as the PSMC, the multiple sequentially 
Markov coalescent (MSMC) method and the site frequency spectrum (see subsection on 
“reconstruction of population history and demographic modelling”). 
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Increasing the Ne of a breed or population is challenging, as it may require a balanced 
number of breeding males and females contributing to subsequent generations. Although 
this type of breeding scheme would help to avoid inbreeding, it would also limit opportu-
nities for directional selection (Curik, Ferenčaković and Sölkner, 2014).

Several software packages available for the analysis of WGS data allow for the estima-
tion of within-breed genetic diversity summary statistics. These software packages include 
the following: PLINK (Chang et al., 2015; Purcell et al., 2007); VCF Tools (Danecek et al., 
2011); R package diveRsity (Keenan et al., 2013); BEAGLE – specifically for detecting IBD 
(Browning, S. and Browning, B., 2010); SNeP – specifically to estimate Ne (Barbato et al., 
2015); ANGSD (Korneliussen, Albrechtsen and Nielsen, 2014) useful for low coverage WGS 
data. For more information, see Appendix 6.

The take home message is that estimation of parameters related to within-breed genetic 
diversity such as Ne is important, but this information needs to be interpreted properly and 
placed in the proper context. Estimation of such parameters should be complemented with 
clustering methods and demographic modelling (see subsequent subsections) to better 
understand evolutionary processes. By combining different approaches, it will be possible 
to use genomics to make a more informed management of breeds and other populations 
of livestock by monitoring Ne and practices such as crossbreeding, while avoiding high 
levels of inbreeding and ultimately preserving adaptive variation.

ASSESSMENT OF POPULATION STRUCTURE AND BETWEEN-BREED 
GENOMIC VARIATION
Principal component analysis (PCA) 
Assessment of the genetic variation within breeds is usually an important objective for all 
genomic characterization studies. Such studies often involve multiple breeds or popula-
tions, however, so, the analysis of the structure of the multiple populations and how they 
relate genetically to each other is also a common research application and provides infor-
mation that is useful for management of the populations. The foremost way of visualizing 
genetic structure of a multi-population (multi-breed) sample is to perform a principal com-
ponent analysis (PCA) on the individual multilocus genotypes. PCA is a statistical method 
to capture the variability associated with many variables (such as marker genotypes) into a 
much smaller number of variables that still contain most of the original variation. The result-
ing variables – the principal components (PCs) – are ranked in descending order according 
to the amount of variation they explain. Thus, PC1 explains the most variation, PC2 the 
second most, and so forth. 

The theoretical basis of the PCA approach has been described by several studies. In a 
sample made of two distinct genetic groups, the PC1 separates these two groups, and the 
proportion of variance explained by this first component corresponds exactly to the FST of 
the sample (McVean, 2009). Distinguishing the two groups is possible if (and only if) the 
product of the number of samples and markers is larger than (1 / FST)2 (Patterson, Price and 
Reich, 2006). Similar arguments suggest that more complex patterns of population struc-
ture also will be detected if the dataset is large enough. For instance, for a sample made 
of ng distinct genetic groups, the number of PCs with significant contributions to the total 
observed variance is equal to ng - 1 (Patterson, Price and Reich, 2006). The PCA may also 



Genomic characterization of animal genetic resources – Practical guide60

suggest about past admixture events: admixed individuals are on the PCA located between 
the two parental populations while their distances to these parental populations reflect the 
percentage of admixture (McVean, 2009; Patterson, Price and Reich, 2006). When popu-
lation structure arises from a continuous isolation-by-distance model, the PC often show 
genetic clines that correlate with geographical clines, and the two-dimensional patterns 
may even resemble the geographic map of the area under study (Novembre et al., 2008).

A standard procedure is to plot projections of the samples on the plane defined by two 
PCs, usually PC1 and PC2 or PC1 and PC3, thus providing a useful survey of the dataset. 
Although the individual PC has no biological or other significance a priori, plotting of the 
data frequently reveals patterns that suggest a logical interpretation. Figure 5 shows an 
example of a PCA plot of cattle breeds and wild relatives (P. Ajmone-Marsan, personal 
communication, 2021). The wild relatives (Banteng and Gaur) appear at the top of the 
graph, separated from cattle breeds along the lower part. The Hong Kong feral cattle, 
which seems to include some common ancestry with wild relatives, falls closest to the mid-
dle of the plot. The other cattle breeds are separated horizontally according to subspecies. 
European taurine breeds group on the far lower left, whereas Asian Indicine breeds are on 
the far right. African taurine breeds are just to the right of the European taurine group, 
whereas Sanga cattle, which are considered to be a composite of African taurine and ind-
icine breeds, are grouped in the bottom centre of the graph, between their two ancestral 
groups. Therefore, a plausible interpretation in this case is that PC1 captures the variation 
between taurine and indicine cattle, whereas PC2 seems to distinguish domesticated cattle 
from their wild relatives.

However, several limitations, potential sources of bias and associated misinterpretations 
should be avoided. Because the PCA plots are two-dimensional projections of samples from 
a multidimensional space, they visualize only a small proportion of the total variation. For 
instance, they do not unambiguously indicate a close relationship of samples and do not 
clearly indicate duplicates. Published plots are often too dense, and thus only allow a super-
ficial survey of the dataset. In addition, the use of many different symbols can be confusing. 
This can be remedied by plotting breed averages instead of individuals and by positioning 
the breed codes within the plot, similar to what is done with geographical names on a road 
map. Unbalanced sample sizes between genetic groups may strongly affect the position 
of these groups on the plot; those with large sample sizes are typically pushed towards 
the centre of the plot (McVean, 2009). If the dataset contains a breed that, by genetic 
isolation, differs substantially from all others, the major PCs mainly reflect this difference, 
which corresponds to the bias due to inbreeding (Lenstra et al., 2012). This result can be 
prevented by excluding such breeds while computing the PCs but not from the plot, an 
approach referred to as “supervised” PCA (Ciani et al., 2020). Another notable feature is 
that several higher-order PCs typically each correspond to the contrast of one breed with 
the others (Kijas et al., 2012). 

Menozzi, Piazza and Cavalli-Sforza (1978) introduced PCA for the study of human genetic 
variation across continental regions. It has since become a standard of population genetic 
data analysis since the 2000s, especially with the advent of high-density genotyping and 
WGS technologies. It can be applied using generic R functions or population genetics soft-
ware such as PLINK (Chang et al., 2015) or eigensoft (Price et al., 2006). See Appendix 6.
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While genetic clines that correlate with geographic clines often result from past 
migration waves, alternative explanations should be explored, such as isolation by dis-
tance (Novembre and Stephens, 2008). Ancient DNA (aDNA) samples with heterogene-
ous sample ages may also distort PCA representations, which can be amended by factor 
analysis (FA) instead of PCA (François and Jay, 2020). Another common method for 
comparing ancient and modern DNA samples is a supervised PCA, in which low-cover-
age aDNA samples are projected in a plot of coordinates computed on the basis of high 
coverage depth DNA samples (Daly et al., 2018), but this does not correct all potential 
biases related to sample age heterogeneity (François and Jay, 2020). For more details on 
the analysis of aDNA specimens, see Box 7. Another mode of supervised PCA is the calcu-
lation of PCs that show the difference between geographical (or genetic) extremes, such 
the northern-most and the southern-most breeds, in order to test the clines between 
these extremes (Ciani et al., 2020). 

Multidimensional scaling (MDS) is an alternative method to survey the dataset by reduc-
ing the number of dimensions (Tzeng, Lu and Li, 2008). In practice, MDS and PCA patterns 
are largely identical, but MDS cannot be run in a supervised mode.

FIGURE 5
A principal components analysis plot of groups of bovine populations, including Banteng,  

Gaur, Hong Kong feral cattle and groups of European taurine, African taurine, Sanga  
and Asian Indicine breeds
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BOX 7
Archaeogenetics applied to farm animals
Daniel Bradley

The recovery of genome variation from archaeo-
logical livestock samples is now eminently feasible, 
thanks to methods for DNA extraction and high 
throughput sequencing, particularly using instru-
ments that give high read numbers from small frag-
ments. Application of these technologies has helped 
solve the problems of contamination in the field; 
that is, the presence of modern livestock DNA within 
an extract is now measurable through bioinformatic 
analysis of the resulting data and problem samples 
can simply be excluded. Also, it is possible to identify 
damage patterns to authenticate aDNA sequences 
and validate results.

Ancient genomics is an invaluable tool for 
understanding modern diversity and its origins. 
Archaeological bones from the cradle of 
domestication in the Near East have yielded genome 
data for both cattle and goats,1,2 showing that the 
initial domestication of both species must have 
been followed by secondary input from additional 
wild populations. A more extreme example is clear 
in pig ancestry, where the Near Eastern genome of 
the first pigs that entered Europe was eventually 
almost completely replaced by introgression from 
the local wild boar.3 Because DNA degrades with 
time, more recent genomes will be more accessible, 
and the early development of modern breeds will 
become visible. For example, in the horse, a sharp 
drop in genome heterozygosity within the last 250 
years has been shown.4 Ancient genomics can also 
reveal past domestic animal diversity that has since 
disappeared; for example, ancient Iberian horse 
genomes from more than four millennia ago have 
revealed the presence of a now-extinct lineage 
that is not ancestral to modern horse populations.4

One enduring aim is to understand genome 
variation in terms of impact and function, and 
ancient genomics has the potential to add to this 
in two ways: in giving temporal resolution to the 
search for genome regions which have been under 
selection and in ancient epigenomics. A group of 
8  000-year-old goat populations from Serbia and 
Iran showed evidence for selection of genetic 
variation involved in pigmentation and some 
production traits; the earliest discovered direct 
evidence of human manipulation of the genomes 
of herded animals.1 Inference of the methylation 
patterns of ancient molecules is also possible, 
although requiring high coverage sequencing, a 
route to directly mapping epigenetic markers in 
the past.5

Because of inherent properties of ancient DNA 
(particularly low concentration, short fragments 

and chemical damage) the number of methods that 
are useful is limited. Some suggested guidelines are 
as follows:

•	 Only high throughput sequencing is regarded 
as reliable and the current state of the art; 
PCR-based assays including microsatellite size 
calls and Sanger sequences are no longer 
deemed to be reliable data.

•	 The best assay is the highest-possible coverage 
genome retrieved by shotgun high-through-
put sequencing. This is a standard that the 
field should aim for, particularly with rare 
irreplaceable ancient specimens.

•	 However, many successful population genetic 
analyses can also be performed using low 
coverage depth genomes (i.e. < 1x), and some 
samples may not feasibly be sequenced to 
higher density because of poor preservation.

•	 Methods such as RNA bait capture6 may also 
be useful (particularly for less well-preserved 
samples) for targeted read enrichment prior 
to sequencing. Examples of useful and achiev-
able bait targets are either whole mitochon-
drial genomes or specific autosomal loci such 
as selected genes or panels of thousands of 
informative SNPs.

•	 Additionally, it is highly desirable to use 
uracil–DNA glycosylase (UDG) treatment of 
sequencing libraries to remove C/G→ T/A mis-
incorporations that have occurred as a result 
of age-related damage to ancient molecules.

1 �Daly, K.G., Delser, P.M., Mullin, V.E., Scheu, A., Mattiangeli, 
V., Teasdale, M.D., Hare, A.J., et al. 2018. Ancient goat 
genomes reveal mosaic domestication in the Fertile Crescent. 
Science, 361(6397): 85–88. https://doi.org/10.1126/science.
aas9411

2 �Verdugo, M.P., Mullin, V.E., Scheu, A., Mattiangeli, V., Daly, 
K.G., Maisano Delser, P., Hare. A.J., et al. 2019. Ancient cattle 
genomics, origins, and rapid turnover in the Fertile Crescent. 
Science, 365(6449): 173–176. https://doi.org/10.1126/science.
aav1002

3 �Frantz, L.A.F., Haile, J., Lin, A.T., Scheu, A., Geörg, C., 
Benecke, N., Alexander, M., et al. 2019. Ancient pigs 
reveal a near-complete genomic turnover following 
their introduction to Europe. Proceedings of the 
National Academy of Sciences of the United States of 
America, 116(35): 17231–17238. https://doi.org/10.1073/
pnas.1901169116

4 �Fages, A., Hanghøj, K., Khan, N., Gaunitz, C., Seguin-
Orlando, A., Leonardi, M., Constantz, C. M., et al. 2019. 
Tracking five millennia of horse management with extensive 
ancient genome time series. Cell, 177(6): 1419–1435.e31. 
https://doi.org/10.1016/j.cell.2019.03.049

5 �Hanghøj, K., Renaud, G., Albrechtsen, A. & Orlando, L. 
DamMet: Ancient methylome mapping accounting for 
errors, true variants, and post-mortem DNA damage, 
GigaScience, 8(4): giz025. https://doi.org/10.1093/gigascience/
giz025

6 �Soares, A.E.R. 2019. Hybridization capture of ancient DNA 
using RNA baits. Methods in Molecular Biology, 1963:  
121–128. https://doi.org/10.1007/978-1-4939-9176-1_13.

https://doi.org/10.1126/science.aas9411
https://doi.org/10.1126/science.aas9411
https://doi.org/10.1126/science.aav1002
https://doi.org/10.1126/science.aav1002
https://doi.org/10.1073/pnas.1901169116
https://doi.org/10.1073/pnas.1901169116
https://doi.org/10.1016/j.cell.2019.03.049
https://doi.org/10.1093/gigascience/giz025
https://doi.org/10.1093/gigascience/giz025
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Model-based clustering
Another common approach to summarize the genetic structure observed in a set of individuals 
is the clustering method first developed by Pritchard, Stephens and Donnelly (2000) and imple-
mented in the software Structure. This method assumes there are K genetic groups (or clus-
ters) and all polymorphic sites are at HWE and linkage equilibrium within these groups. Each 
individual i is modelled as a mixture of these K groups with specific proportions qij with j = 1  
to K (i.e., ΣK

j = 1 qij = 1.0). Structure estimates these proportions from the observed individual 
genotypes using a Monte Carlo Markov Chain (MCMC) algorithm. In the most standard appli-
cation (“unsupervised” clustering), the K clusters and their associated allele frequencies are 
inferred, and the biological meaning of cluster number j is deduced a posteriori from the set 
of individuals. For an individual i, a value of qij close to 1.0 indicates that the individual is most 
likely a member of cluster j. Ideally, this reveals the major ancestral populations and the com-
position of admixed individuals or populations. “Supervised” clustering allows one to define a 
priori the ancestral clusters, and to infer directly the admixture proportions of the other individ-
uals, similar to assignment methods like GeneClass (Piry et al., 2004). The original approach of 
Pritchard, Stephens and Donnelly (2000) was later extended to account for sampling location 
(Hubisz et al., 2009), linked loci and shared ancestry between clusters (Falush, Stephens and 
Pritchard, 2003). More efficient inference approaches of the same model were also developed 
in the software Frappe (Tang et al., 2006) and Admixture (Alexander, Novembre and Lange, 
2009), allowing the analysis of much larger datasets and larger values of K, albeit with the 
constraint that loci are independent from each other, and that they are in linkage equilibrium.

Again, there are caveats and pitfalls to be avoided. Many scientists choose to interpret the 
results of model-based clustering in terms of population history. For instance, the separation 
of one cluster into two subclusters at high K values is often interpreted as a past divergence 
event. More generally, inferred clusters are equated to ancestor populations and any breed 
that is not assigned to one cluster is assumed to be admixed. However, Structure is essen-
tially a clustering approach for genetic data, but does not model evolutionary processes such 
as drift, mutation, migration or divergence (see subsections on “genetic distances among 
breeds” and “reconstruction of population history and demographic modelling” for such 
methods). The implicit assumption that the ancestral populations are present in the dataset is 
often not met. Thus, the inferred clusters do not necessarily correspond to real past or present 
populations and strongly depend on the composition of the dataset. Applying Structure to 
populations along a genetic cline formed by preferential mating of proximate parents (isola-
tion-by-distance) may infer homogeneous clusters that contain the extreme populations and 
mixed compositions for the central populations (Engelhardt and Stephens, 2010). This may 
be remedied by modelling continuous spatial variation between (Corander, Waldmann and 
Sillanpää, 2003; Franco̧is, Ancelet and Guillot, 2006; Guillot, Mortier and Estoup, 2005) or 
within clusters (Bradburd, Coop and Ralph, 2018), and the latter option allows the analysis 
showing both discrete and continuous genetic structure. By the sampling and the inbreeding 
bias, inferred clusters tend to correspond to overrepresented and inbred breeds, respectively 
(Lenstra et al., 2012). 

However, despite the risk of mis- or over-interpretation of results, model-based clustering 
does contribute to the data analysis by showing graphically: (i) groups of related individuals 
from one or more breeds; (ii) ancestral proportions, provided inferred clusters correspond to 
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ancestral populations, which may be accomplished in the supervised mode; and (iii) subdi-
vision of breeds not inferred by PCA or genetic distances.

As an alternative to the supervised mode, breed-specific admixture analysis (BSAA) is based 
on the selection of 300 ancestry informative markers (AIM) specific for a breed suspected to be 
introgressed, for instance, by markers that have the highest FST between the putatively intro-
gressed breed and a group of other breeds. It was demonstrated that Structure analysis with 
300 to 400 AIM markers provides a more sensitive detection of (pre)historic admixture than f4 
analysis (see the subsection below on “detection of admixture using f3, f4 and D statistics”). 

Both Structure and PCA attempt to summarize observed genetic diversity by using a 
reduced number of K latent factors, namely the clusters for Structure and the PCs for the PCA 
(Engelhardt and Stephens, 2010). More specifically, both methods decompose the genotype 
matrix X as X = QF, where Q is a matrix of n individuals × K factors that quantify the indi-
vidual compositions. The two methods impose different constraints to the matrices Q and F; 
the coefficients of Q are positive and must sum per individual to one with Structure, but not 
with PCA. Other latent factor approaches were proposed to analyse genetic data (Engelhardt 
and Stephens, 2010; Frichot et al., 2014) and represent interesting alternatives to PCA and 
Structure. For instance, the sparse Nonnegative Matrix Factorization (sNMF) developed by 
Frichot et al. (2014) and implemented in the LEA R package estimates admixture proportions 
with the same accuracy as the Admixture software, while reducing computation time by a 
factor of 3 to 30 and being less affected by the inbreeding of the analysed populations.

Genetic distances
Genetic distances between individuals
The third common approach to visualize genetic structure uses a matrix of genetic distances 
between all pairs of individuals. For SNPs of a diploid species, distances are based either on 
the identity by state (IBS) of markers or on genomic relationships of individuals (Grünwald 
et al., 2017; Yang et al., 2011), both of which can be computed using PLINK. These dis-
tances can be visualized via MDS analysis, the alternative to PCA described earlier (Tzeng, 
Lu and Li, 2008), or via neighbour-joining trees (Saitou and Nei, 1987) (see subsection on 
“genetic distances among breeds”). Such trees unambiguously show the identity or close 
relationship of samples and are recommended for quality control of SNP datasets (see 
Section 3). They also show the level of inbreeding of breeds via short terminal branches. 
However, individual-based trees can be misleading on the deeper phylogenetic relationships 
of the breeds, which are better explored by genetic distances based on allele frequencies of 
breeds (see subsection on “reconstruction of population history and demographic model-
ling”). A representation of the genetic distances in a network that connect each individual 
to its ten nearest neighbours (“supermagnetic clustering”) shows genetic structure within 
populations (Neuditschko, Khatkar and Raadsma, 2012), which may be related to the une-
ven use of breeding sires (Neuditschko et al., 2017).

So far, the approaches described assume markers to be independent, but several recent 
studies take advantage of haplotype information of phased datasets, that is, data with infor-
mation about which alleles of different markers are on the same haploid chromosome copy 
(maternal or paternal). Such information is not provided by dideoxy-Sanger or short-read 
sequencing (SRS). Without data from the (expensive) PacBio or Oxford Nanopore long-read 
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sequencing (see Section 3), phasing must be inferred statistically by exploiting observed LD 
patterns in the population or genotype information from close relatives (Al Bkhetan et al., 
2019; Browning, S. and Browning, B., 2007; Delaneau, Marchini and Zagury, 2012). 

The ChromoPainter approach implemented in the program FineSTRUCTURE (Lawson et al.,  
2012) builds a co-ancestry matrix of individuals based on local haplotype similarity along 
the genome, and uses this matrix for PCA and clustering (similar to Structure). For both 
applications, the use of haplotype information significantly improved the resolution of the 
inferred population structure. The method was developed for high-density SNP datasets, 
and its performance with low-density (< 50 000 SNPs) datasets is not yet clear. Therefore, 
when using this method, it is essential to show that the linked mode, using haplotypes, 
gives better results than the unlinked mode (using separate SNPs). Going beyond this 
genome-wide description, the Relate (Speidel et al., 2019) and tsinfer (Kelleher et al., 2019) 
methods reconstruct the phylogeny of observed haplotypes, i.e. the most-probable inher-
itance at every SNP position in the genome, accounting for the haplotype diversity observed 
among sampled individuals around this position. All these methods are either based on or 
inspired by the model of Li and Stephens (2003), which iteratively considers one sampled 
haplotype and tries to reconstruct it as a mixture of the others.

In a study by The Bovine HapMap Consortium, et al. (2009), genotype data at 37 470 
SNPs were available for 497 cattle from 19 geographically and biologically diverse breeds. 
This dataset was analysed using a Structure-like (Figure 6A) and a PCA approach (Figure 6B). 
PC1 separates zebu and taurine breeds, similar to the Structure analysis with K = 2 clusters. 
PC2 further separates African versus European taurine breeds, similar to the Structure analysis 
with K = 3 clusters. Breeds resulting from admixture between these three main groups are 
indicated by dashed rectangles, and clearly stand out in both analyses. The Structure analysis 
with K = 9 identifies several clusters corresponding to single breeds. 

FIGURE 6
Genetic structure of worldwide cattle breeds, according to:  

(A) model-based clustering; and (B) principal component analysis

Source: adapted from The Bovine HapMap Consortium, et al. 2009. Genome-wide survey of SNP variation uncovers the 
genetic structure of cattle breeds. Science, 324(5926): 528–532. https://doi.org/10.1126/science.1167936.

https://doi.org/10.1126/science.1167936
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Genetic distances among breeds
Since the development of selective breeding in the eighteenth century, the mating of ani-
mals with similar desired characteristics has resulted in the establishment of breeds, which 
are usually defined by a range of morphological, economic and behavioural traits (Taberlet 
et al., 2008). Depending on the degree of genetic isolation, animals from the same breed 
are genetically more similar to each other than to animals from different breeds. These 
differences among animals from different breeds can be quantified using genetic distances 
between individuals, and also by determining the components of the genetic variation 
within and between breeds using an Analysis of Molecular Variance (AMOVA) (Excoffier, 
Smouse and Quattro, 1992; Michalakis and Excoffier, 1996). 

There are two important differences between phylogenies at the species (macroevo-
lution) and breed (microevolution) levels. First, the bulk of molecular differences between 
species are quantified via fixed differences in the DNA sequence. However, the mammalian 
substitution rate, approximately 1.0 to 1.25 × 10-8/bases/generation (The 1000 Genomes 
Project Consortium, 2010; Kong et al., 2012; Venn et al., 2014), is too slow to generate 
many of the DNA differences observed between breeds that diverged at most 10 000 years 
ago and, in most cases, only 50 to 200 years ago (Laval, SanCristobal and Chevalet, 2002). 
Instead, the major DNA-based differences between breeds depend on genetic drift, the 
mechanism behind the change of allele frequencies in genetic markers as a function of the 
Ne. Second, many species do not interbreed and hybrids of related species are often infer-
tile. As a consequence, the phylogeny of species can be largely represented by a tree topol-
ogy without connections between branches. In contrast, fertile crossbreeding of breeds is 
a rule rather than an exception, and trees of breeds are at best a practical visualization of 
an estimation of the true phylogeny of breeds.

The extent of genetic drift separating two hypothetical populations A and B can be 
quantified as the additive statistic f2, or the mean of (PA - PB)2 with  PA and PB corresponding 
to the frequencies of allele P for a SNP in populations A and B, respectively. The f2 is the 
average of the squared differences across all genetic markers studied in the two popula-
tions (Patterson et al., 2012; Peter, 2016). Several genetic distances have been derived from 
f2, such as the Reynolds distance or DR (Reynolds, Weir and Cockerham, 1983), which is 
the preferred genetic distance for breed comparisons (Laval, SanCristobal and Chevalet, 
2002) and which correlates very well with the FST fixation index (Wright, 1951). Because 
it approximates the average inbreeding coefficient of the two breeds compared, DR trees 
may represent the loss of within-group genetic diversity (Laval, SanCristobal and Chevalet, 
2002). However, with SNP panels, this is likely to be confounded by the ascertainment bias 
(AB), which may increase the estimates of diversity of the common international trans-
boundary breeds. 

Note that the accuracy of allele frequencies depends on an adequate sample size per 
breed. In practice, 20 animals per breed are considered to be sufficient for biallelic markers; 
in fact, a sample size of 20 diploid animals has a probability of 95 percent of including the 
whole genealogy of the breed (Hein, Schierup and Wiuf, 2003). As with any statistical test, 
larger amounts of data will increase precision. If at least 20 samples cannot be obtained, 
a lower sample size tends to increase the proportion of homozygote genotypes and thus 
the genetic distances to other breeds, but usually does not alter the topology of a tree 
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(see the following subsection on “phylogenic trees and networks”). The FST distance as 
estimated by Weir and Cockerham (1984) accounts for low and uneven sample sizes. Using 
medium-density array datasets, Ramljak et al. (2018) calculated genetic distances between 
short haplotypes consisting of the alleles of up to four SNPs located within a stretch of 150 
kilobases. 

Phylogenetic trees and networks. The neighbour-joining (NJ) algorithm (Saitou 
and Nei, 1987) is the most common and one of the simplest methods to reconstruct 
phylogenetic trees on the basis of a matrix of n × n pairwise genetic distances between 
n breeds. It works by choosing the pair of breeds that, after being combined, gives the 
largest reduction of the total branch length of the tree, after which the distance matrix is 
recalculated and reduced to (n - 1) × (n - 1) breeds, continuing iteratively until all breeds 
have been paired. Such a tree complements PCA and model-based methods and represents 
a hierarchical clustering of breeds, with the length of the terminal branches indicating the 
degree of genetic isolation of a breed. In contrast to the (not recommended) unweighted 
pair group method with arithmetic mean (UPGMA) approach, the NJ algorithm does not 
assume an even rate of change across breeds, which agrees with the effect of genetic drift 
being breed specific. The effect of genetic drift can be observed when the NJ tree is visu-
alized like a phylogram where the tree’s branch lengths are proportional to the amount of 
change in each breed. Other visualizations such as cladograms are not suitable to visualize 
the effect of genetic drift, as the branches in such methods are not proportional to the 
amount of change.

Conceptually, the topology of a tree directly shows genetic events as breed divergence, 
genetic drift and breed isolation. In practice, this is realized mainly for the most closely 
related breeds, but is not shown by PCA or model-based clustering. Trees of individuals 
based on genetic distances also show the genetic drift, but do not show very well the 
relationships between breeds. However, phylogenetic trees of breeds have a few inherent 
limitations:

•	 Testing the significance of clusters is problematic and bootstrapping values are low.
•	 The deeper bifurcations are supported by short branch lengths and may not be 

realistic.
•	 As shown by their hierarchical topology, trees cannot visualize reticulations and are 

thus confounded by gene flow between breeds leading to admixture. Breeds that 
have been derived by crossbreeding, such as taurine−indicine composites, tend to 
cluster in the NJ tree in between the source breeds (Ginja et al., 2019; Kopelman 
et al., 2013; Mei et al., 2018). Whereas this still may be a useful visualization of a 
genetic cline with again the terminal branches showing the breed-specific genetic 
drift (Decker et al., 2014), it should be realized that the genetic differences are 
dominated by the degree of crossbreeding. Thus, bifurcations and branch lengths 
no longer correspond to divergence events and genetic drift, respectively. If cross-
breeding occurred recently, the genealogy of the alleles depends on the position 
of the alleles in the genome. 

Various methods have been developed to introduce reticulation in a tree by construction 
of an admixture graph. The most popular methods are the NeighbourNet and Treemix algo-
rithms. NeighbourNet graphs (Bandelt and Dress, 1992; Dopazo, Dress and von Haeseler, 
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1993; Dress, Huson and Moulton, 1996) can be constructed via the easy-to-use program 
Splitstree (Huson, 1998) with many graphical options. It is based on the NJ algorithm, but 
considers three instead of two breeds before reducing the difference matrix. NeighborNet 
graphs share the main advantages of NJ trees by reproducing the terminal branches and 
unambiguous clusters of breeds, but replaces the often meaningless bifurcations of a tree by 
networks (Ciani et al., 2020; Kijas et al., 2012; Pitt et al., 2019). These network trees are not 
to be interpreted in terms of specific genetic events and may correspond to ancestral breed 
pools, and at least visualize the uncertainty of the phylogenetic reconstruction. However, 
NeighborNet graphs rarely show reticulations corresponding to specific cases of crossbreed-
ing. Kijas et al. (2012) and Ciani et al. (2020) showed that deeper phylogenetic splits, i.e. 
between breed clusters rather than between breeds, are resolved better if: (i) the most recent 
and documented crossbreds are removed; and (ii)  the unambiguous monophyletic breed 
clusters are combined in one taxon. All this may contribute to the formulation of specific 
hypotheses to be tested statistically or by modelling. 

The sophisticated program Treemix (Pickrell and Pritchard, 2012) constructs a max-
imum-likelihood tree based on the covariances of the allele frequencies, which overall 
agrees with NJ trees. Subsequently, the agreement between the covariances explained by 
the tree and the real covariances can be improved by adding vectors between branches that 
represent gene flow (migration) between those branches. Taking a user-defined number of 
migrations, Treemix optimizes a new tree topology, the start and endpoint of the migrations 
and their weights (Decker et al., 2014; da Fonseca et al., 2019; Orozco-terWengel et al.,  
2015). However, the graphical output has a poor quality that cannot be adapted easily. 
More importantly, we recommend that the migrations inferred on the basis of an overall 
match of graph-based and real covariances are tested, for instance, using the f3 or f4 statis-
tics, which is rarely done. Ciani et al. (2020) found that plausible admixture confirmed by 
both f4 analysis and BSAA were only partially reconstructed by Treemix. Other methods to 
construct admixture graphs are discussed in the next section.

Detection of admixture using f3, f4 and D statistics. The availability of genome-wide 
datasets obtained by SNP arrays (The Bovine HapMap Consortium, 2009; Kijas et al., 2012) 
and WGS (Alberto et al., 2018; Bosse et al., 2014; Fan et al., 2020) led to the understand-
ing that hybridization and admixture among breeds are more common than previously 
thought. The marker density of SNP data now allows for an accurate estimation of new 
statistics for the detection of gene flow between well-diverged breeds (Patterson et al., 
2012; Peter, 2016). These statistics can be used with both individuals and breeds. Figure 7 
shows the most common applications of the f3 and f4 statistics based on allele frequencies 
of three (f3) or four (f4) breeds. As is shown in Figure 7, they can be decomposed as the sum 
or difference of distances between nodes as quantified via the f2 genetic drift statistic. For 
a more extensive theoretical treatment involving path lengths and admixture proportions, 
we refer to Patterson et al. (2012) and Peter (2016). 

Calculation of the f3 statistic while using an outgroup (a reference population that is 
distantly related to the populations of interest in a genetic study) is useful for quantifying 
the relative affinity of individual animals or breeds, for instance, of ancient and modern 
DNA samples (Daly et al., 2018). The properties of f3 for detection of admixture can be 
understood by considering that the average of (PC – PA) × (PC – PB) becomes negative if PC 
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is intermediate between PA and PB for many SNPs, which indeed reveals recent admixture. 
However, a positive value of f3 does not exclude admixture, which limits its use. 

The statistic f4 is more predictable since admixture follows directly from systematic 
differences from zero. These deviations can be understood by considering that sharing of 
characteristic alleles by source and target or, for a more general case, by A and C (Figure 7),  
but not by the other possible pairs of breeds, leads to a correlation of PA and PC, which 
makes the average of (PA - PB) × (PC – PD) positive; decomposing f4 into a function of four 
f2-scaled distances as indicated in Figure 7 results in a total length of zero without gene 
flow, but becomes greater than zero if gene flow shortens the f2(A, C) distance. 

FIGURE 7
Definitions of the f2 statistic, the outgroup f3 statistic, the admixture f3 statistic  

and the admixture f4 statistic with an outgroup and the more general case with four breeds 

Note: The figure shows how the statistics correspond to branch lengths and how they are used as test statistics for the 
occurrence of gene flow.

Source: Author's own elaboration (Johannes A. Lenstra).
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The f4 statistic is related to the D statistic from the ABBA/BABA algorithm. This method 
considers the sister taxa one and two, the donor three and the outgroup. For a given SNP, 
A is the ancestral allele fixed in the outgroup, while B is the derived allele fixed in the donor 
three. For a haploid genome, the possible allele combinations for one, two, three and the 
outgroup are AABA, ABBA, BABA and BBBA. Ignoring the non-informative AABA and 
BBBA, a higher degree of admixture from three into two than from three into one follows 
from a majority of SNPs with the ABBA pattern: 

D = [n(ABBA) - n(BABA)]/[n(ABBA) + n(BABA)], in which n(ABBA) and n(BABA)are the 
counts of SNPs with the ABBA and BABA patterns, respectively. For a collection of samples, the 
use of allele frequencies instead of counts and an adapted formula allow to consider also SNPs 
for which A and B are not fixed in the outgroup and the donor, respectively (Patterson et al., 
2012). For statistical testing, D is preferred above f4 (Patterson et al., 2012). However, we stress 
that both methods strictly depend on a tree-like evolution of the breeds being considered 

The F-statistics can be used to construct more realistic admixture graphs than a 
NeighborNet or Treemix graph. However, because this procedure is very specialized and 
only partially automated by software, the methods described in the literature are not gen-
erally used. The programs QPTOOLS from the AdmixTools package (Patterson et al., 2012) 
and ADMIXTUREGRAPH (Leppälä, Nielsen and Mailund, 2017) take as input a user-specified 
admixture graph and all possible f2, f3 and f4 values and then optimize the branch lengths 
and admixture proportions. MIXMAPPER (Lipson et al., 2013) selects breeds for which a 
hierarchical tree can be constructed (i.e. no negative f3 values, additivity of f2 values) and 
then sequentially and interactively adds admixed breeds while optimizing topology, sources 
of gene flow, branch lengths and admixture proportions. 

Phylogeny across the genome. So far, we compared individuals or groups on the basis 
of genome-wide genetic variation. However, as a consequence of genetic recombination, the 
genome of a given animal may consist of segments with widely different genealogical histo-
ries (Li and Durbin, 2011). For instance, within crossbred individuals, portions of the genome 
originate from different breeds (Fan et al., 2020), which have resulted from various demo-
graphic processes such as migration, inbreeding and selection. Software products have been 
developed that attempt to overcome the deviating phylogenetic signals from markers and thus 
establish the genealogy that truly reflects the breeds’ evolutionary processes. Among these, 
SNAPP (Bryant et al., 2012) uses a likelihood-based approach to estimate the groups’ true tree 
based on the genetic variation of markers across the genome. Hobolth et al. (2007) estab-
lished a framework that enables simultaneous modelling of divergence or speciation times, 
and demographic parameters such as the ancestral Ne, which has been successfully applied 
to model the divergence history of the European bison, Bison bonasus (Gautier et al., 2016).

RECONSTRUCTION OF POPULATION HISTORY AND DEMOGRAPHIC 
MODELLING
Several methods presented above can identify evolutionary processes in the history of spe-
cies, populations and breeds, while representing patterns of differentiation. The subsequent 
subsections will focus on methods that explicitly aim at detecting, dating and quantifying 
population size changes and other events such as admixture or population splits. Because 
the complexity of the evolutionary history of species and breeds probably precludes its full 
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reconstruction, even with genomic data, the interpretation of an inferred demographic 
history should thus always be done with caution. Also, in the case of domesticated animals 
one must keep in mind that this evolutionary history integrates the recent artificial selec-
tion, the domestication process, and the history of the wild species from which they were 
derived. Genetic and genomic data enable testing alternative interpretations and models 
by comparing the genetic consequences of alternative evolutionary scenarios with observed 
data. This is particularly true with the approximate Bayesian computation (ABC) framework 
(Beaumont, 1999; Beaumont, Zhang and Balding, 2002). 

An initial step is to describe the coalescent theory, which is at the heart of modern pop-
ulation genetics (Hudson, 1991, 2002; Wakeley, 1999). It was developed in the 1980s and 
1990s to study the statistical properties of gene trees for non-recombining DNA fragments 
(Kingman, 1982) evolving under a simple demographic model that assumes panmixia and 
isolation from other populations (i.e. no population structure), non-overlapping generations, 
neutrality, and constant population size (e.g. the Wright-Fisher model). It has since been 
extended to account for population size changes (Griffiths and Tavaré, 1994), population 
structure (Herbots, 1994), recombination (Griffiths and Marjoram, 1997) and different 
sampling times to integrate aDNA or viral samples. Some types of selection can also be inte-
grated. The coalescent theory takes a retrospective approach that differs from modelling or 
simulation approaches used before the 1980s. Coalescence and classical simulation are now 
commonly denoted as backward and forward simulation, respectively. A coalescent approach 
works backward in time and focuses on the statistical properties of the gene trees of the sam-
ples. If a population is large, the probability that lineages coalesce (have a common ancestor) 
is low, whereas in a small population this probability is high. As a consequence, starting from 
a particular sample size the length of the branches connecting these samples will depend on 
the changes in population size, as one goes backward in time, and as the number of remain-
ing lineages decreases. In a more general way, the coalescent theory studies how gene trees 
depend on the parameters of the demographic models of interest (past population sizes, 
migration rates, age of a bottleneck or an admixture event). Coalescent-based methods are 
sample-based and thus computationally less expensive than the population-based forward 
methods, which require the simulation of the whole population. The development of soft-
ware such as ms (Hudson, 2002), allowed the development of simulation-based inference 
methods including ABC. Forward simulations are still used, for instance, for selection and are 
being revived after recent improvements in efficiency, e.g. SliM (Haller and Messer, 2019).

The coalescent theory played a central role in the development of inferential methods in the 
1990s and 2000s. It was shown that bottlenecks and expansions have different effects on the 
shape of trees, hence allowing the use of coalescence-based inference to distinguish between 
the two types of events. This led to the development of likelihood-based methods to compute 
the conditional probability PM (Data | Param) of generating the observed Data under a prede-
fined demographical model M, defined by a set of parameters Param = (Par1, . . . , Park), which 
may correspond to divergence times, population sizes or migration rates. Likelihood methods 
apply optimization algorithms, often via a sophisticated search of the parameter space, to find 
parameter values that best explain the observed Data, i.e. the maximum likelihood estimates 
of the parameters. A Bayesian perspective can also be used to estimate probability density 
functions for the parameters, assuming prior distributions for these parameters, PM (Param), 



Genomic characterization of animal genetic resources – Practical guide72

and multiplying them by the likelihoods to obtain posterior distributions using Bayes formula: 
PM  (Params | Data) = PM  (Param) × PM  (Data | Param) / PM  (Data). Likelihood-based methods 
were developed between the mid-1990s and mid-2000s and applied to different demographic 
models to consider: population size change (Beaumont, 1999); population structure and gene 
flow (Beerli and Felsenstein, 2001); population split and post-split migration rates (Nielsen and 
Wakeley, 2001); or admixture (Chikhi, Bruford and Beaumont, 2001). 

In the last decade several important methods have been developed that allow users to infer 
either simple or complex demographic models with genomic data. One of the most popular is 
the PSMC method of Li and Durbin (2011), which uses the genome of a single diploid individ-
ual (or two haploid genomes) and infers a histogram or “skyline plot” usually interpreted as a 
history of population size changes. The PSMC uses information on mutation and recombination 
rates to analyse and interpret the distribution of heterozygous sites along the genome. Under 
panmixia (i.e. absence of genetic subdivision) the method estimates the history of population 
size changes that best fits the distribution of heterozygous sites. Schiffels and Durbin (2014) 
extended the method by allowing the use of multiple phased genome sequences simultaneous-
ly (MSMC). Under panmixia the MSMC also estimates the history of population size changes. 
It is important to note that both the PSMC and MSMC only use information from the first 
coalescence time, Tk, where k is the number of haploid genomes and thus ignores most of the 
information contained in the whole coalescent tree. These methods provide only information 
on events that took place within the time frame defined by the Tk. Thus, the more haploid 
genomes one uses with MSMC, the earlier the start and end of the reconstructed curves.  

Other methods use the site or allele frequency spectrum (AFS) as a way to summarize 
genomic data across many independent loci. For instance, the Fastsimcoal2 (Excoffier et al., 
2013) and dadi (Gutenkunst et al., 2009) software allow the user to infer the parameters 
of tree models in which populations are allowed to have different population sizes and 
may be connected by gene flow. For computational reasons, the number of populations 
is limited, typically two to five populations depending on the methods. Fastsimcoal2 uses 
a likelihood approach and can thus be used to compare alternative tree models, with or 
without gene flow or admixture. 

A general inferential framework for comparing alternative models is ABC, which is par-
ticularly well adapted to study complex demographic datasets and evolutionary models for 
which the likelihood may be difficult or impossible to compute. In such cases, the principle 
of ABC is to use large numbers of simulations under different demographic models and 
parameter values together with two approximations. First, the data are summarized by a 
limited number of summary statistics (such as nA, Tajima’s D or He), and the objective is to 
estimate PM (SummData | Param), where SummData is a vector of the summary statistics. 
Second, simulated datasets are selected with a SummData that, according to a tolerance 
threshold, are close enough to the SummData of the real dataset. The parameter values 
corresponding to the selected simulations (usually the best 0.1 or 1 percent) are kept for 
inference. The number of simulations used to estimate the posterior distributions of the 
parameters of a particular model is typically > 105-106. The coalescent theory played a cen-
tral role in the development of ABC methods by enabling an efficient simulation of data. 
The simplest ABC algorithm is usually called “rejection” because it only requires filtering the 
best simulations according to the tolerance threshold and rejecting the others. 
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The ABC framework is extremely flexible, and can handle complex datasets and other 
situations for which classical models do not perform well. For instance, Boitard et al. 
(2016) used the AFS together with summary statistics measuring LD at different distances 
to reconstruct a history of population size changes in large samples obtained from a set of 
four cattle breeds (Angus, Fleckvieh, Holstein and Jersey). ABC can also be used to compare 
alternative demographic models by computing the relative proportions, among alternative 
models, of simulated SummData closer to the observed SummData. It can also test the 
quality of the inference process by generation of pods (pseudo observed data) on the basis 
of the different models, and check if an ABC analysis of the pods indicates the correspond-
ing model and generates a meaningful posterior distribution of parameters. However, the 
large number of simulations required by ABC methods can become computationally inten-
sive with genomic data and complex alternative models.

Beaumont, Zhang and Balding (2002) demonstrated that a regression algorithm 
achieved the same quality of the inference as the rejection algorithm but with ten times 
fewer simulations, allowing a much lower tolerance threshold. Other approaches have 
been proposed to improve the regression step by using non-linear regression and neu-
ral networks (Csilléry et al., 2010). More recently, a machine-learning approach called 
“random forests” has been proposed as a way to avoid the selection step of summary 
statistics, and the need to define a tolerance threshold (Raynal et al., 2019). One pow-
erful and versatile software package for ABC analyses is the ABCtoolbox (Wegmann 
et al., 2010) 

MITOCHONDRIAL DNA AND THE SEX CHROMOSOMES
The genetic diversity of autosomes, sex chromosomes and mtDNA is affected in different 
ways by demography, and their combined analysis provides insight into the various historical 
processes that shaped present-day populations. Because of their lack of recombination, the 
evolution of mtDNA and Y-chromosomal DNA is less complex than the evolution of auto-
somes, and can be reconstructed largely by obtaining a phylogenetic tree and coalescence 
analysis. Generally, it reveals links between the domestic species and their wild ancestors, 
and shows ancient bottlenecks that contributed to differentiated haplogroup distributions, 
e.g. in (sub)continents (Lenstra et al., 2014), but is considerably less informative than auto-
somal DNA for reconstructing breed histories. In addition, mito-nuclear discordances occur 
frequently simply due to incomplete lineage sorting or by sex-biased introgression, such as 
for the European bison carrying cattle-like mtDNA (Wang et al., 2018), zebu outside Asia 
carrying taurine mtDNA (Ginja et al., 2019), or possibly the Grey jungle fowl that carries a 
domestic/Red jungle fowl mitochondrial haplotype (Lawal et al., 2020).

Before the availability of WGS data, the analysis of Y-chromosomal variation was limited 
by a lack of informative markers. It shows the paternal history, which by the small male 
population size for most domestic species has led to a considerable breed-level differen-
tiation (see Box 8). For many species, in current genome assemblies the Y chromosomes 
are partially represented by unplaced scaffolds that are only present in males, and for a 
large part consist of Y-chromosomal repeats and multicopy genes. Note that single-copy 
male-specific SNPs are hemizygous, that is, they have one allele per individual without het-
erozygosity scores (Ho and He) and should not have scores in females. 
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BOX 8
Y-chromosomal variation
Barbara Wallner

Due to its complex DNA structure, it is often 
omitted from genome assemblies. But the 
Y chromosome has a powerful property: its 
male-specific, non-recombining part (MSY) 
is transmitted as a tight linkage group (a 
haplotype) from the father to the son. Hence, 
genetic variation on the MSY reflects the 
paternal history of populations.1 

The MSY diversity is best studied in the 
humans, where deep insights derive from 
several decades of steady progress in variant 
discovery and haplotype analyses. A diverse 
spectrum of polymorphisms on the human 
MSY, ranging from small- and large-scale 
rearrangements, SNPs, indels and CNVs 
as single tandem repeats, now presents a 
clear picture of the human male genealogy 
(reviewed by Jobling and Tyler-Smith in 
20172). The wealth of MSY markers available 
in humans enables the study of evolution over 
different time scales. The work in humans has 
also demonstrated that a community accepted 
MSY phylogeny, based on defined haplotype 
determining variants, is pivotal to consolidate 
results from different studies.3 

The tremendous amount of WGS data 
becoming available is now empowering 
comprehensive fine-scaled MSY haplotype 
analysis in domestic species. To infer the MSY 
pattern in a population of interest, proper 
MSY variant discovery is a prerequisite. As a 
first step, one usually needs to define MSY 
sequences that can be used as the reference for 
variant calling from NGS data. The potential 
of MSY draft assemblies, combined with an 
approach to define MSY regions appropriate 
for reliable variant calling, has been recently 
demonstrated in the horse,4 camel5 and sheep.6 
After mapping WGS data to the reference and 
variant ascertainment, the allelic states of MSY 
variants can be catenated into haplotypes, and 
a robust haplotype phylogeny can be built 
under the principle of maximum parsimony. 
Once the MSY phylogeny is defined, haplotype 
dispersal should be screened by genotyping 
haplotype determining markers in larger 
sample collections.6 

Defining the MSY haplotype signatures that 
are diagnostic for a given breed or even a single 
influential individual enables to univocally trace 
their influence. This process has been conducted 

in the horse to assess the influence of the 
Thoroughbred breed.7,8 From horse studies the 
importance of an appropriate ascertainment 
panel has become evident, as haplotypes that 
are private in rural populations are still not 
fully defined9 and ancient remains enlighten 
significant turnover of MSY haplotype spectra 
through time and space.10 

Establishing MSY phylogenies is 
computationally demanding, and obtaining 
inferences on haplotype distribution is labour 
intensive. The building of international 
consortia to coordinate MSY research in 
livestock would be extremely beneficial.
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The Y chromosome and human evolution. Trends in 
Genetics, 11(11): 449–456. https://doi.org/10.1016/
S0168-9525(00)89144-1
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Y-chromosome variation in the genome-sequencing 
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3 �Van Oven, M., Van Geystelen, A., Kayser, M., Decorte, 
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Faye, B., Brem, G., Walzer, C. & Burger, P.A. 2019. A 
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6 �Deng, J., Xie, X-L., Wang, D-F., Zhao, C., Lv, F-H., Li, X., 
Yang, J., et al. 2020. Paternal origins and migratory 
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4085–4095. https://doi.org/10.1016/j.cub.2020.07.077
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Druml, T. & Brem, G. 2013. Identification of genetic 
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of male founder lineages in modern breeds. PLoS 
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pone.0060015
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Deviations from the expected levels of genetic diversity and divergence of the X chro-
mosomes have been observed in several species. For mammals, the X chromosome is pres-
ent in two copies in females and one copy in males, therefore, the expected ratio between 
the genetic diversities of chromosome X and the autosomes is 0.75 (Ellegren, 2009; Wilson 
Sayres, 2018). However, this ratio has varied widely in several breeds of European and 
African cattle (da Fonseca et al., 2019). Increased levels of X-chromosomal diversity have 
been shown to result from growth in population size (Van Belleghem et al., 2018; Pool and 
Nielsen, 2007). Conversely, a reduction in relative diversity follows an overall reduction in 
Ne (Ellegren, 2009; Pool and Nielsen, 2007). In livestock populations, this is often a conse-
quence of breeding practices that involve the selection of a few individuals with desirable 
phenotypes. A reduction in population size would result in relatively strong genetic drift 
of Xchromosomal alleles, which yield smaller estimates of Ne than do marker data from 
autosomes. In the case of cattle, molecular signatures of a bottleneck have been detected 
in several cattle breeds (Boitard et al., 2016; da Fonseca et al., 2019; Ginja, Telo Da Gama 
and Penedo, 2010; Kim et al., 2017; Martín-Burriel et al., 2011).

Another process that is expected to impact the relative diversity of the sex chromosomes 
is sex-biased gene flow (Ellegren, 2009; Wilson Sayres, 2018). This is especially relevant for 
cattle, for which artificial insemination of many cows with semen of very few sires is a wide-
spread practice. Furthermore, it is known that historically female populations were more 
likely to be geographically constrained and human-driven hybridization/crossbreeding may 
have been carried out mainly using males (Lenstra et al., 2014). Generally, introgression is 
more efficient in the autosomes than in the sex chromosomes, as observed for the domestic 
chicken (Lawal et al., 2020). This pattern can be explained by stronger species barriers on 
the sex chromosomes (Meiklejohn et al., 2018).

As shown by da Fonseca et al. (2019), the use of whole-genome sequences led to two 
observations that are probably related and may very well be of fundamental significance. 
First, a ratio of FST values for autosomal and X-chromosomal sequences depends dramatically 
on the cattle being compared. For taurine vs indicine cattle, the X-chromosomal FST values 
were ~25 percent larger than the autosomal values. In contrast, within taurine cattle, the 
autosomal FST values were about twice those of the X chromosome, and for Iberian cattle 
with autosomal FST values ranged from 0.1 to 0.26, whereas the X-chromosomal range was 
0 to 0.04. Second, in model-based clustering at K = 2, the clusters corresponded to taurine 
and indicine cattle. In this case, the autosomes of African taurine cattle showed an indicine 
component of 18 to 36 percent, whereas the X chromosomes remained purely taurine. It 
is not yet clear if these effects can be explained by a relatively ineffective X-chromosomal 
introgression; there may well be consequences of genetic conflicts underlying the meiotic 
drive (Meiklejohn et al., 2018).  Since LD-based pruning removes X-chromosomal SNPs, this 
was never noticed with bead-arrays, but it is certainly worth following up.

IDENTIFICATION OF GENOMIC REGIONS SUBJECT TO SELECTION
Domestication, adaptation, breed formation and selective breeding have left specific 
genetic patterns, “selection signatures,” in genomic regions of farm animal breeds (e.g. 
Raudsepp et al., 2019). The identification of selection signatures is a central goal in evo-
lutionary and population genetic studies, but also has importance in characterization of 
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animal genetic resources (AnGR) for food and agriculture. With methods for the detec-
tion of selection signatures it may be possible to identify, for example, genes related to 
economically important traits or for adaptation to challenging environments (Saravanan 
et al., 2020; Weldenegodguad et al., 2019). Breeds displaying special adaptive traits may 
merit high priority in conservation strategies. Selection signature studies can also provide 
knowledge of quantitative trait loci (QTL) for production characters and important causal 
mutations (Saravanan et al., 2020). Moreover, genome-wide searches for regions associ-
ated with phenotypic traits may promote our understanding of the function of genomes. 
For example, several whole-genome datasets have shown that a large proportion of SNPs 
exhibiting selection signatures correspond to non-coding genomic regions, indicating 
that selection occurs specifically via the regulatory elements of genomes (Librado et al., 
2015). 

Types of selection
During the domestication process, genomes of animals have been shaped by natural 
selection and artificial selection. Human-initiated artificial selection (or selective breeding) 
conducted over generations for productive, morphological, fertility and other economically 
important traits has had remarkable effects on genetic and phenotypic variation within and 
between breeds of farm animal species (Felius, 1995; Forutan et al., 2018). Natural selec-
tion driven by environmental circumstances involves differential reproduction of genetically 
diverse types, such that some types leave more offspring than others (e.g. Falconer and 
MacKay, 1996). Three forms of natural selection are typically classified: (i) positive selection; 
(ii) purifying selection (negative or background selection); and (iii) balancing selection. 

The various forms of selection have specific effects on allelic and genotypic frequen-
cies, as well as on genomic structural variation in animal populations (de Simoni Gouveia  
et al., 2014). When artificial selection or natural positive selection increases frequency of 
an advantageous allele, the frequencies of neutral variants that are physically linked to the 
advantage allele tend to change (de Simoni Gouveia et al., 2014, and references therein). 
This process is termed “genetic hitchhiking.” When a substantial (or complete) reduction 
of genetic variation at the target of selection and its surrounding genomic regions occurs, 
it’s called a “selective sweep” (Maynard-Smith and Haigh, 1974). Moreover, in these 
chromosomal regions an increase in the average LD is expected to occur, leading to long 
haplotypes. These changes can typically be observed in statistical parameters related to 
genetic diversity within and between populations (de Simoni Gouveia et al., 2014, and the 
references therein). The within-population diversity is typically decreased in these regions, 
while between-population diversity tends to increase. In negative (purifying) selection, the 
selective pressure operates against disadvantageous alleles at the target of selection, thus 
not always affecting the surrounding genetic variation, especially when there are multiple 
advantageous or disadvantageous alleles. However, negative selection can also result in loss 
of genetic variation at the region of the genome which, although neutral, is linked to the 
negatively selected sites; this process is known as “background selection” (Charlesworth, 
B., Morgan and Charlesworth, D. et al., 1993). The third main form of natural selection, 
balancing selection, maintains multiple alleles in a locus and high genetic diversity (Oleksyk, 
Smith and O’Brien, 2010). Major histocompatibility complex genes are classical examples 
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of genes shaped by balancing selection (Hedrick, 1998). More information on various 
forms of selection and their effects on nonneutral and linked neutral genetic variation is 
provided in the literature (de Simoni Gouveia et al., 2014; Horscroft et al., 2019; Saravanan 
et al.,2020). Figure 8 is a graph showing trends in diversity of the KITLG genic region of 
sheep and goats (Alberto et al., 2018). This region includes subregion that shows decreased 
diversity in domesticated sheep but decreased diversity in goats, presumably due to spe-
cies-specific selection processes associated with domestication. 

Methods of detecting selected loci
Methods to detect selection signatures have been recently reviewed by Utsunomiya et al. 
(2015), Horscroft et al. (2019) and Saravanan et al. (2020). The methods commonly used 
in livestock studies can be classified into two main groups: (i) methods based on intra-pop-
ulation statistics; and (ii)  those on inter-population statistics (Saravanan et al., 2020). In 
intra-population methods, genomic or DNA-marker data are compared within populations. 
In this group, methods are based on the site frequency spectrum, LD or the identification 
of genomic regions with reduced variation compared to the genome average (de Simoni 
Gouveia et al., 2014; Alachiotis and Pavlids, 2018; Saravanan et al., 2020). Alachiotis and 

FIGURE 8
Chromosomal regions under selection within the KITLG gene for sheep and goats

Note: The regions have decreased genetic diversity in domesticated sheep and a greater diversity in goats.

Source: Alberto, F.J., Boyer, F., Orozco-terWengel, P., Streeter, I., Servin, B., de Villemereuil, P., Benjelloun, B., et al. 2018. 
Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 9(1): 813.  
https://doi.org/10.1038/s41467-018-03206-y (This figure was not altered from its original version).

https://doi.org/10.1038/s41467-018-03206-y
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Pavlids (2018) introduced a composite evaluation test, μ statistic for detection of positive 
selection, which examines genomic regions by quantifying the site frequency spectrum, the 
levels of LD and the amount of genetic diversity along a chromosome. PCAdmix (Brisbin  
et al., 2012) is a sophisticated and popular software program that can be used to detect 
adaptive introgression. It uses phased genotypes and applies PCA and a Hidden Markov 
Model on sliding windows along the genome in order to detect the ancestry of the individ-
uals as this varies across the genome. Local deviations of the ancestry shared by all individ-
uals of a breed then may indicate that the region is involved in adaptation

The inter-population approaches are based on allele frequency differences and the 
degree of differentiation among the populations (Saravanan et al., 2020). The level of 
genetic differentiation can be analysed using single site differentiation or haplotype-based 
differentiation (Saravanan et al., 2020). Coding sequences of orthologous genes among 
animal species can also be compared and tested based on synonymous and non-synony-
mous substitution rates applied to detect the neutrality or the form of selection (positive or 
negative) (de Simoni Gouveia et al., 2014). In addition, “landscape” genetics and genomics 
(Manel et al., 2003, 2010) approaches may reveal associations between genomic data and 
environmental variables, and thereby environmental adaptive signatures (e.g. Mdladla, 
Dzomba and Muchadeyi, 2018; Vajana et al., 2018). See Box 9 for more information on 
landscape genomics.

Appendix 6 provides examples of software and includes a section for applications that 
have been used in domestic animal studies to detect selection signatures. Because various 
methods have different strengths and weaknesses, it is typically recommended that more 
than one method be used for analyses of selection signatures (de Simoni Gouveia et al., 
2014; Utsunomiya et al., 2015; Yurchenko et al., 2018; Horscroft et al., 2019; Saravanan 
et al., 2020). In animal populations, demographic events such as population expansions, 
genetic bottlenecks and population subdivision can lead to false selection signals that 
mimic signatures of selection (de Simoni Gouveia et al., 2014; Utsunomiya et al., 2015). de 
Simoni Gouveia et al. (2014), Utsunomiya et al. (2015), Ahrens et al. (2018) and Horscroft 
et al. (2019) have presented approaches to avoid effects of demography or other factors 
causing bias in selection signature analyses.

GENOME-WIDE ASSOCIATION STUDIES
As mentioned previously, the development and application of dense marker panels that 
can be genotyped at a high-throughput frequency by using microarray technology (see 
Section 3) has facilitated the generation of large-scale genotype data for many domes-
tic animal species. The most widely applied microarrays provide genotypes for between 
50 000 and 800 000 SNPs that are evenly spread across the genome. Millions of domestic 
animals have been genotyped with these arrays in the past decade with the primary goal 
to implement genomic selection and predict genomic breeding values (Georges, Charlier 
and Hayes, 2019). The availability of dense genotypes and a diverse array of phenotypes, 
often available over multiple generations, makes domestic animal populations amenable to 
genome-wide association testing. In genome-wide association studies (GWAS), statistical 
tests are applied to examine if molecular markers are associated with the expression of 
phenotypes. Because such analyses effectively involve the testing of multiple hypotheses 
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BOX 9

Landscape genomics
Stephane Joost

Landscape genomics is a research field that 

combines population genomics, landscape 

ecology, computer science and bio-geoinfor-

matics to explicitly quantify the effects of 

environmental heterogeneity on neutral and 

adaptive genetic variation and underlying pro-

cesses. Landscape genomics has potential for 

addressing questions in various research fields, 

including ecology, evolution, and conservation 

of livestock breeds. The discipline is based on 

the idea that environmental conditions can 

substantially affect the genetic variation of 

local populations, with important consequenc-

es for evolutionary processes.

The landscape genomics approach consists 

of linking genome-wide information to 

environmental variables to identify potentially 

valuable genetic material, like genomic regions 

conferring adaptive advantages. Typically, data 

obtained from genome-wide scans carried out 

on a number of animals from populations 

living in different habitats or across ecological 

clines will be compared to geo-environmental 

information characterizing these habitats 

(such as yearly amount of precipitation, 

monthly temperatures, number of days with 

ground frost, etc.). Comparisons are carried 

out by means of association models calculated 

between allele or genotype frequencies and 

the values of the environmental variables. The 

parallel and simultaneous processing of up to 

billions of statistical equations (i.e. hundreds 

of environmental variables times millions of 

SNPs) makes it possible to identify genomic 

regions of interest, for instance, linked to 

genes involved in adaptation to heat, or genes 

involved in processes of resistance against 

parasites.

In developing countries, small ruminants 

play an important role in the livelihood of a 

large proportion of farmers. In these countries, 

conserving traditional breeds is essential since 

they are able to survive in harsh conditions 

and often changing habitats, to which their 

wide genomic diversity makes it possible to 

adapt. Therefore, landscape genomics is an 

important tool to identify the key genetic 

features of local adaptation and to support 

sustainable breeding of low-input livestock.

In the current context of global warming, 

this genetic adaptive potential can be directly 

integrated into conservation management 

using spatial areas of genotype probability 

(SPAGs). This tool is able to transpose 

landscape genomic results into an adaptive 

potential spatial prediction framework. SPAGs 

can then be integrated with climate change 

projections to forecast the future spatial 

distribution of genotypes. The analysis of 

the mismatch between current and future 

SPAGs (“genomic offset”) makes it possible 

to identify vulnerable populations lacking 

the adaptive genotypes necessary for future 

survival.

Environmental data are necessary to 

compute landscape genomics models. The 

WorldClim1 database contains monthly 

minimum, maximum and average temperatures 

and total precipitation together with a series 

of bioclimatic variables computed from these 

variables. The Climatic Research Unit2 in 

Norwich, United Kingdom, one of the world's 

leading institutions concerned with the study 

of natural and anthropogenic climate change, 

also produces several datasets that can be used 

in the context of landscape genomics studies.

For computation, several open-source 

software packages implement landscape 

genomics algorithms. These are provided in 

Appendix 6.

1 �WorldClim. 2020. WorldClim. Cited 20 March 2021. 
www.worldclim.org

2 �CRU (Climate Research Unit). 2021. Climatic Research 
Unit. University of East Anglia, Norwich, United 
Kingdom. Cited 18 March 2021. www.uea.ac.uk/
groups-and-centres/climatic-research-unit
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simultaneously, the markers need to pass stringent significance thresholds to be considered 
as significantly associated with the trait of interest. Various statistical methods have been 
developed to account for multiple testing (Rice, Schork and Rao, 2008; Joo et al., 2016). 
Marker panels typically do not contain causal mutations, so the primary aim of GWAS is to 
identify regions likely to harbour causal variants through an association with a physically 
linked genotyped variant. The precision to localize causal variants through GWAS with 
anonymous marker panels depends on the marker density. Sparse marker panels may 
result in large confidence intervals for QTL, rendering the identification of causal variants a 
difficult task. Due to extensive LD between adjacent markers in populations with small Ne, 
QTL confidence intervals may also be large even when dense marker panels are employed. 
Functional investigations are required to differentiate between causal variants and anony-
mous markers in LD with the causal variants (Karim et al., 2011).

Apart from the density of the marker panel, the power of the GWAS, that is, the proba-
bility to detect trait-associated markers, depends on: (i) the LD between molecular markers 
and QTL; (ii) the heritability of the trait and/or size of the single locus effect; and (iii) the 
size of the mapping cohort (Goddard and Hayes, 2009). The most widely applied geno-
typing arrays in domestic animal species have been developed for cosmopolitan breeds 
(Matukumalli et al., 2009), thus they are less informative for local breeds that are greatly 
diverged from the breeds used to develop the marker panels. Moreover, the genotyped 
markers are often depleted for low-frequency variants. This may result in AB (see Section 
3), which can compromise the power of GWAS, particularly in local breeds. While large 
mapping cohorts may be established easily in cosmopolitan breeds, the small census size 
of local breeds may also be a limiting factor for GWAS to detect markers associated with 
within-breed variation. Across-breed GWAS may reveal variants that are associated with 
breed differences (Schoenebeck and Ostrander, 2013). However, even in large cosmopol-
itan breeds, the large sample size required to detect trait-associated variants may not be 
readily available for novel traits, thus requiring efforts to coordinate collaborative projects 
to establish powerful mapping cohorts (Lu et al., 2018). 

Both binary (discretely distributed) and complex (continuously distributed) traits may 
be subjected to GWAS testing. Association testing for binary traits requires genotypes for 
a cohort of individuals that expresses a particular phenotype (“cases”) and for a cohort 
of control individuals that don’t express the phenotype (“controls”). Chi-square tests and 
Fisher tests of allelic association may be implemented to test the association between 
markers and binary traits (Balding, 2006). It is important though, that both cohorts are 
matched because systematic differences in allele frequencies between cases and controls 
due to stratification may confound the GWAS and lead to false-positive associations. The 
highest-ranking PCs of a genomic relationship matrix can be effectively used to account 
for population structure and cryptic relatedness in case-control GWAS (Price et al., 2006; 
Nosková et al., 2020). Case-control association testing of genome-wide markers has been 
successfully used to reveal causal variants for many Mendelian traits in domestic animals, 
and most of them are curated at the Online Mendelian Inheritance in Animals (OMIA) 
database (OMIA, 2021).

Most continuously distributed traits are highly polygenic and recent empirical evidence 
suggests that they are predominantly determined by additive effects (Hayes et al., 2010; 
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Hivert et al., 2021). Each causal variant explains only a small fraction of the phenotypic 
variation of these complex traits. To avoid an inflation of false-positive association signals 
arising due to population stratification (see previous paragraph), software (see Appendix 6) 
for complex trait GWAS typically rely on mixed model-based approaches that fit a (genom-
ic) relationship matrix. While QTL that explain a relatively large fraction of the trait variation 
can be detected in small mapping cohorts (Pausch et al., 2011; Signer-Hasler et al., 2012), 
the discovery of QTL with small effects usually requires tens of thousands of genotyped 
animals (Bouwman et al., 2018).

The first GWAS were performed in 2005 for monogenic traits in human populations 
(DeWan et al., 2006; The Wellcome Trust Case Control Consortium, 2007). Likewise, the 
first SNP-based GWAS in domestic animals were performed for monogenic traits using 
genotypes for approximately 25  000 SNPs (Karlsson et al., 2007; Charlier et al., 2008). 
Since then, both the size of the mapping cohorts and the marker density have increased 
continually. The largest GWASs in domestic animals have been performed in cattle, which 
included the genotypes at more than 25 million variants for more than 94 000 samples (van 
den Berg et al., 2020). With an ever-increasing size of mapping cohorts and more mark-
ers being tested, efficient software tools are required to undertake marker quality control 
and the association analyses. Since its initial release, the PLINK software has undergone a 
major overhaul and has become a practically indispensable tool for genotypic data analy-
sis at the population scale (Purcell et al., 2007; Chang et al., 2015). Moreover, the .bed/.
bim/.bam-format and its derivatives used by PLINK to store genotypic data are accepted 
as an input for most downstream analyses. Basic association analyses may be performed 
with PLINK. However, more sophisticated statistical methods that are based on Bayesian 
or mixed model-based approaches may be conducted efficiently with the EMMAX (Kang  
et al., 2010), GCTA (Yang et al., 2011) and BayesR (Erbe et al., 2012; Moser et al., 2015) 
and LFMM2 (Caye et al., 2019) software tools (see Appendix 6). Latent factor mixed models 
(LFMMs) are, in particular, currently gaining popularity. This method has been designed for 
detection of gene-environment associations and identifies SNPs with allele frequencies that 
correlate with environmental clines or with phenotypes.

With an increasing number of animals being sequenced, GWAS nowadays often rely 
on imputed sequence variant genotypes (see Section 3). Informative haplotype reference 
panels are required to accurately infer sequence variant genotypes for mapping cohorts 
that have array-derived genotypes. Such reference panels have been established for a vari-
ety of animals, including cattle (Daetwyler et al., 2014; Hayes and Daetwyler, 2019), sheep 
(ISGC, 2014), goats (IGGC, 2013) and dogs (Plassais et al., 2019). Genotypes imputed 
from informative haplotype reference panels may readily reveal causal variants in GWAS 
(Pausch et al., 2017). The integration of functional data is required to fine-map QTL regions 
and reveal causal variants (Xiang et al., 2019). Cross-species approaches where informa-
tion from humans is used to prioritize causal variants in livestock has also been explored 
(Costilla et al., 2020; Raymond et al., 2020). Novel approaches that are based on low-pass 
sequencing and imputation-based genotype refinement offer a cost-effective opportunity to 
perform sequence-based GWAS also in populations that either lack informative haplotype 
reference panels or for which dense microarrays are not available (Li et al., 2021; Rubinacci  
et al., 2021; Fuller et al., 2020), which offers opportunities for less common livestock species. 
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APPLICATION OF GENOMICS IN SUSTAINABLE USE AND CONSERVATION
This document emphasizes the use of genomics for the characterization of AnGR, and 
therefore are designed to facilitate the implementation of Strategic Priority Area (SPA) 1 of 
the Global Plan of Action for Animal Genetic Resources (FAO, 2007) on Characterization, 
Inventory and Monitoring of Trends and Associated Risks. Genomics can also play an 
important role in the sustainable use and development (SPA2) and conservation (SPA3) of 
AnGR. Those roles for genomics are somewhat out of the scope of this documents, so they 
will not be addressed in detail. The subsequent subsections will briefly introduce some of 
the opportunities that genomics provide for these SPAs. Oldenbroek (2017) addresses the 
contributions of genomics to the management of AnGR in more detail.

Every breed has a history
Never the same; livestock breeds are not static entities but have continuously evolved. 
Changes have been substantial after domestication (Larson and Fuller, 2014; Zeder, 2015), 
but perhaps the most consequential changes have taken place during the last 200 years 
through the formation of breeds and the systematic breeding. This can now be reconstruct-
ed by the analysis methods outlined herein. The following are a few examples showing 
how the evolution of breeds is directly or indirectly relevant for their management and 
conservation.

Local and transboundary breeds
Most breeds originate from local populations. Thus, they potentially harbour unique adap-
tive traits and often belong to the local cultural heritage. However, influence from other 
populations has often been undocumented. The influence from other breeds may not 
necessarily affect their adaptation and traditional status, but reconstruction of their local 
and non-local ancestry by genomic analysis will be most revealing. A recent study in Brazil 
revealed some unexpected information about Latin American sheep breeds (see Box 10). 
The genomic characterization of groups of breeds also may reveal the sources of adaptive 
introgression, which contributes to both resilience and uniqueness (Barbato et al., 2017; 
Chen et al., 2018). However, the introduction of exotic highly productive breeds, such as 
the Holstein dairy cattle or the Merino wool sheep, does replace robust unique animals by 
more productive uniform populations that require intensive management. 

For goats, Colli et al. (2018) observed on the basis of genome-wide SNP genotypes 
reported a strong geographic partitioning of goats. In addition, several ancient goat DNA 
samples are related to modern goats from the same location (Daly et al., 2019), indicating 
a high degree of local ancestry. In contrast, The International Sheep Genomics Consortium 
(ISGC, 2012) reports a high level of geneflow among global sheep populations, which was 
presumably driven by the desire for increased wool or mutton production and has eroded 
the geographic differentiation. 
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BOX 10

Application of basic genomic diversity 
studies: A case study of Brazilian hair 
sheep breeds
Samuel Paiva

A recent study in Brazil1 provides an example of 

how genetic diversity data may advise national 

conservation and breeding programmes. Geno-

types (50 000 SNPs) from seven Brazilian sheep 

breeds (five hair and two coarse wool types) 

and 87 worldwide breeds were used to eval-

uate population structure and phylogenetic 

origin and quantify genetic diversity. The main 

result shows that Brazilian hair sheep, contrary 

to other breeds, have shared alleles with breeds 

from both African and European continents 

(Admixture and PCA). This mixture of genetic 

sources, plus adaptation to local conditions 

has resulted in high genetic variability (neu-

tral and functional) that will be considered in 

conservation and breeding programmes. For 

example, Brazilian hair sheep breeds have high 

frequencies of a specific allele (FecGE) in the 

GDF9 gene2 linked to litter size, which has not 

been commonly reported among breeds out-

side the Americas. This trait has already been 

used to enrich the collection of material in the 

Brazilian National Gene Bank and has provided 

farmers with an additional tool for in-herd 

selection. The study also helped to identify rare 

or genetically distant national breeds for which 

germplasm collection will be a priority. The 

Brazilian Somali was the first breed prioritized 

for germplasm collection, and the gene bank 

has already begun cryopreservation of semen 

and embryos. The endangered Brazilian Fat-tail 

sheep was also identified as a priority for cryo-

conservation. Analyses of genetic diversity and 

population structure were also used to identify 

the breeds with more potential for breeding 

programmes. The number of animals in the 

Santa Ines (hair) breed has expanded over the 

last decade, in part due to crossbreeding with 

other populations, and is currently the primary 

commercial hair breed in Brazil.3 With high 

genetic diversity and low inbreeding compared 

to other Brazilian breeds, it has potential to 

achieve high genetic gains in production traits 

within a well-designed breeding programme.

1 �Paim, T.P., Paiva, S.R., de Toledo, N.M., Yamaghishi, 
M.B., Carneiro, P.L.S., Facó, O., de Araújo, A.M., et al. 
2021. Origin and population structure of Brazilian hair 
sheep breeds. Animal Genetics, 52(4): 492–504.  
https://doi.org/10.1111/age.13093

2 �Silva, B.D., Castro, E.A., Souza, C.J., Paiva, S.R., Sartori, 
R., Franco, M.M., Azevedo, H.C., et al. 2011. A new 
polymorphism in the Growth and Differentiation 
Factor 9 (GDF9) gene is associated with increased 
ovulation rate and prolificacy in homozygous sheep. 
Animal Genetics, 42(1): 89–92. http://doi.org/10.1111/
j.1365-2052.2010.02078.x

3 �McManus, C., Hermuche, P., Paiva, S.R., Melo, C.B. 
& Mendes, C.Q. Geographical distribution of sheep 
breeds in Brazil and their relationship with climatic 
and environmental factors as risk classification 
for conservation. Brazilian Journal of Science and 
Technology, 1: 3. https://doi.org/10.1186/2196-288X-1-3

What’s in a name?
Many breeds have been exported to other countries, most notably from Europe into the 
Americas and Australia. Distinct populations of these “transboundary” breeds often have 
been further developed separately on different continents. This has led, for instance, to 
the creation in America of black varieties of European beef breeds, and genomic analyses 
show that several American breeds form a cluster separate from their European namesakes 
(Davenport et al., 2020). In France, this divergence of a breed into distinct units has even 
occurred with the national population of the Alpine goat breed, discernible by genomic 
characterization (see Box 11). Conversely, closely related breeds with different herdbooks, 
but regularly exchanging sires, may be different in name only.
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BOX 11

Genomic characterization as tool in the 
breed recognition process
Coralie Danchin-Burge

In France, a ruminant breed is officially recog-
nized by the Ministry of Agriculture if it fits a set 
of criteria validated by a commission of experts. 
The items to provide to the commission include a 
description of the breed’s history, its phenotypic 
description, the existence of a breed register, a 
list of breeders, and the common set of rules for 
organizing the selection or conservation process, 
etc.

The most prominent French goat breed is the 
Alpine, which originated in the northern part of 
the French Alps. For 50 years the breed has been 
intensively selected for dairy traits. The main 
selection nuclei are now located in the west and 
centre of France. Meanwhile, some farmers kept 
the traditional population in the Alps and claimed 
to have limited exchange of animals or germ 
plasm with the rest of the breed. A breeders’ 

association was created 20 years ago to preserve 
this population which they called “Savoie.” The 
official recognition was complicated to achieve 
because the experts doubted that the population 
was significantly different from the Alpine breed.

In the mid-2010s, a medium SNP goat chip 
(by Illumina Inc.) became available in France for 
a reasonable price (about USD 40/genotype). 
The breeders’ association, in collaboration with 
a research and development institute (IDELE), 
took this opportunity to sample and genotype 
about 40 goats to compare it with available 
Alpine genotypes. IDELE performed a PCA based 
on a kinship genomic matrix that showed that 
the Savoie breed is indeed a close relative to the 
Alpine breed, but that the population differs 
now from the Alpine (see Figure 9). The analysis 
was also an opportunity to detect animals that 
were clearly crossbred recently with the Alpine, 
leading to their withdrawal from the conservation 
programme. The results of the genomic analysis 
were provided to the expert commission and 
were one of the factors that led to the official 
recognition of the Savoie breed in 2020.

FIGURE 9
First two principal components using four French selected goat populations from the Alps
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Valuable DNA or valuable breeds?
Genome analysis allows an accurate assessment of the diversity, both across the genome or 
at the level of individual genes. However, it is not straightforward to link this diversity to the 
value of a breed. Differences between breeds are quantified via allele frequencies instead 
of the number of mutations, as is frequently done for discriminating between species.  
A unique allele frequency profile by genetic drift does not in itself make a breed valuable 
(European Cattle Genetic Diversity Consortium, 2005), but may be relevant for breed man-
agement in different ways. First, genetic distances on the basis of the allele frequencies may 
reveal that a breed underwent a long separate history in a given environment and thus is 
expected to possess unique adaptive traits. Second, levels and patterns of homozygosity 
as influenced by small population sizes and/or assortative mating are warning signs of 
inbreeding depression affecting health and fertility. Third, as mentioned, it may indicate a 
unique adaptive influence of cross-fertile species (Chen et al., 2018). On the other hand, 
short genetic distances do not exclude large differences in phenotype. For instance, the 
unique Merino wool sheep are closely related to the coarse-wool Churra breed (ISGC, 
2012) despite their vastly different fibre-quality characteristics. 

It may be argued that livestock breeds carry largely overlapping portions of the available 
adaptive variation. Thus, it may be questioned if, in general, breeds are to be considered 
as unique units of conservation (Felius, Theunissen and Lenstra, 2015). On the other hand, 
the diversity of livestock species is primarily managed on the level of breeds, which may 
include conservation measures, adjustment of breeding objectives and crossbreeding. Thus, 
livestock breeds remain the units for management of diversity, a practice that can now 
more and more be supported by genomic analysis.

Sustainable use and development
The long-term sustainability of a given breed will be enhanced if that breed has greater sur-
vival and longevity, is more productive and profitable, or otherwise contributes competitively 
to the livelihood of its keepers (FAO, 2013). Improvement through selective breeding is one 
opportunity to increase the average genetic merit of breeds for heritable traits associated with 
sustainability. Although it is technically not “genomic characterization” and will thus not be 
covered in depth herein, “genomic selection” (Meuwissen, Hayes and Goddard, 2001) is an 
approach that statistically associates the phenotypes of animals within a population to their 
genotypes, as defined by large panels (typically thousands) of SNPs. Operationally, genomic 
selection can be performed either by predicting the substitution value of each of the alleles 
of the panels of SNPs, or by using multi-locus genotypes to obtain more accurate relation-
ship matrices than can be obtained by using pedigrees and replacing the matrices in typical 
methods based on best linear unbiased predictions (BLUP). When large amounts of historical 
performance and pedigree data are available, the breeding values of animals without phe-
notypes can be predicted much more accurately than with pedigrees alone. These “genomic 
breeding values” may also allow selection to occur prior to sexual maturity, thus increasing 
response to selection by decreasing the generation interval. Genomic selection is currently 
being routinely practiced in several livestock species (Georges et al., 2019). 

Alas, because the accuracy of genomic selection increases with the amount data 
available, breeds with small population sizes and/or a lack of historical performance and 
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pedigree data may have less opportunity to benefit than do larger breeds (Mészáros et al., 
2015; Obšteter et al., 2019). Breeds with small population sizes tend to also have small 
Nb and small Ne, meaning that intense selection to maximize genetic response may quickly 
decrease genetic variation to unacceptably low levels. Genomic data provides the possibility 
to balance selection response and maintenance of genetic variation at the molecular level, 
such as by applying genomic-based optimum contribution selection (Obšteter et al., 2019; 
Sánchez-Molano, Pong-Wong and Banos, 2016).

Genomics can also contribute to the management of genetic diversity as it relates to 
one or a few loci. Methods for detecting selection signatures and GWAS can be used to 
identify targets for introgression or purging of deleterious loci. Genomic or marker-assisted 
selection can then be applied to increase/decrease the frequencies of the alleles associat-
ed with the trait in the population (Gaspa et al., 2015). Genomics may also be used to 
decrease the proportion of “foreign” genes from a population that had been historically 
subjected to crossbreeding (Wellmann, Hartwig and Bennewitz, 2012). Finally, genomic 
characterization can be applied to individual crossbred animals to determine their genetic 
composition, potentially leading to improved management (see Box 12). 

BOX 12

Estimation of ancestral breed 
proportions to improve management 
of admixed dairy cattle in developing 
countries

In many developing countries, imported semen 

has been used for decades to try to increase 

the milk production of local cattle popula-

tions. This process has increased productivity 

in many cases but has also tended to erode the 

genetic background of the original breeds.1 

In many instances, the livestock keepers are 

unsure about the breed composition of their 

cattle.2 Assessment of the admixture among 

the breeds contributing to these populations 

allows the estimation of the proportion of 

ancestry from local and imported genetics for 

populations and individual animals. The tech-

nology can also be applied for determining 

parentage and evaluation of genetic diversity 

of the populations. Knowledge about the 

breed composition of individual animals can 

be used by farmers and other stakeholders to 

identify the best-performing genotypes in the 

local production environment, and to inform 

the management and mating of individu-

al animals. Recent studies have applied this 

approach in Africa3 and India.4

1 �Leroy, G., Boettcher, P., Besbes, B., Peña, C.R., Jaffrezic, 
F. & Baumung, R. 2020. Food securers or invasive 
aliens? Trends and consequences of non-native 
livestock introgression in developing countries. Global 
Food Security, 26: 100420. http://doi.org/10.1016/j.
gfs.2020.100420

2 �Manirakiza, J. Hatungumukama, G. Thévenon, S. 
Gautier, M. Besbes, B. Flori, L. & Detilleux, J. 2017. 
Effect of genetic European taurine ancestry on milk 
yield of Ankole-Holstein crossbred dairy cattle in mixed 
smallholders system of Burundi highlands. Animal 
Genetics, 48(5): 544–550. https://doi.org/10.1111/
age.12578

3 �Gebrehiwot, N.Z., Strucken, E.M., Marshall, K., Aliloo, H. 
& Gibson, J. 2021. SNP panels for the estimation of dairy 
breed proportion and parentage assignment in African 
crossbred dairy cattle. Genetics Selection Evolution, 
53(1): 21. https://doi.org/10.1186/s12711-021-00615-4

4 �Strucken, E.M., Gebrehiwot, N.Z., Swaminathan, M., 
Joshi, S., Al Kalaldeh, M. & Gibson, J. 2021. Genetic 
diversity and effective population sizes of thirteen 
Indian cattle breeds. Genetics Selection Evolution, 
53(1): 47. https://doi.org/10.1186/s12711-021-00640-3
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Conservation
Genomics may also contribute to reaching conservation objectives. As a first step, genomic 
estimates of breed-wise genetic distances (distinctiveness) or kinship (diversity) can be used 
to prioritize genetically valuable breeds for conservation (e.g. Ginja et al., 2013). The meth-
odology for these approaches was originally developed for simpler markers, such as micro-
satellites, but in general can be applied to genomic data. For a review of these approaches, 
see Boettcher et al. (2010). The genetic assessments may then be considered together 
with other factors such as risk of extinction and cultural significance for a comprehensive 
assessment of conservation priority (FAO, 2013).

Toro, Villanueva and Fernández (2014) reviewed the possible contributions of genom-
ics for management of livestock conservation programmes. They discuss genomics-based 
approaches to evaluate genetic diversity of populations according to identity by descent 
IBD, rather than IBS. Approaches applied to in vivo populations may also be applied for 
the management of gene bank collections. Ideally, in vivo and cryoconserved populations 
should be managed together. Genomics are currently being used to evaluate and man-
age populations within the Chinese national conservation programme for chickens, as 
described in Box 13.
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BOX 13
Application of genome-wide SNPs  
in monitoring the impact of long-term  
in situ–in vivo conservation scheme on the 
genetic diversity of Chinese indigenous 
chicken breeds
Han Jianlin

Based on the latest nation-wide survey on animal 
genetic resources,1 114 indigenous chicken breeds, 81 
improved chicken breeds/lines and 35 exotic chicken 
breeds/lines were identified and recorded in China.2 
Twenty-eight of the indigenous chicken breeds have 
been recognized and included into the national direc-
tory for conservation of livestock and poultry genetic 
resources.3 Currently, two comprehensive national  
ex situ–in vivo conservation gene banks, one national 
cryoconservation gene bank for somatic cells and 
DNAs, and 13 national in situ–in vivo conservation 
farms for individual breeds have been established 
and approved for the management and sustainable 
utilization of Chinese indigenous chicken genetic 
resources.4 To establish a conservation farm for an 
indigenous chicken breed, at least 300 breeding hens 
and 30 breeding cocks (each from a different family) 
are recommended to be maintained over genera-
tions.5 Twenty-one indigenous chicken breeds were 
found to be at risk of extinction due to their very 
small breeding population sizes;6 fortunately, at least 
four such breeds have been successfully rescued by 
the conservation measures.7

At one of the national ex situ–in vivo conservation 
gene banks – the National Chicken Genetics Resources 
program established in Jiangsu, three breeds, Baier 
Yellow chicken (BEC), Beijing You chicken (BYC) and 
Langshan chicken (LSC), have been maintained since 
1976, 1998 and 1998, respectively, along with other 
Chinese indigenous chicken genetic resources. The 
conservation programmes began with a recommended 
flock size including 300 hens and 30 cocks, which have 
been continuously maintained with a family rotational 
mating regime. To evaluate the effectiveness and 
impact of this scheme on the genetic diversity of 
these populations,8 performed an investigation 
using genome-wide SNPs for 270 birds from three 
generations per breed and 30 birds per generation (10 
cocks and 20 hens). Up to 716 373 SNPs were screened. 
Results are shown in Figure 10. Both Ho and He were 
generally lower in these nine populations than other 
populations of chicken from around the world.9,10,11,12,13 
Estimates of FIS based on either pedigree information 
or genome-wide SNPs have been gradually increasing 
over generations. The proportions of polymorphic SNPs 
have decreased in BEC and BYC. The loss of genetic 

variability and the accumulation of inbreeding over 
generations was probably due to the rapid reduction 
of population sizes when the conservation lines were 
established. Therefore, a combination of both ex 
situ and in situ–in vivo conservation populations was 
recommended to maintain acceptable neutral and 
functional genetic diversity in the indigenous chicken 
breeds in the future.

1 �CNCAGR (China National Commission of Animal Genetic 
Resources). 2011. Animal Genetic Resources in China – 
Poultry. China Agriculture Press, Beijing.

2 �China. 2020. Ministry of Agriculture and Rural Affairs 
publishes National Directory of Genetic Resources for 
Livestock and Poultry. (In Chinese). Beijing. Cited 25 July 2021.  
www.gov.cn/xinwen/2020-05/29/content_5515954.htm

3 �China. 2020. The list of breeds to be conserved. (In Chinese) 
Beijing. Cited 25 July 2021. www.nahs.org.cn/gk/tz/202101/
P020210115497616621650.pdf

4 �China. 2014. The General Office of the Ministry of 
Agriculture issued the "National Broiler Genetics Notice of 
Improvement Plan (2014–2025). (In Chinese). Beijing. Cited 
25 July 2021. www.moa.gov.cn/nybgb/2014/dsiq/201712/
t20171219_6110244.htm

5 �China. 2006. Departmental Regulations-Management 
Measures for the Protection Areas and Gene Banks of 
Livestock and Poultry Genetic Resources. (In Chinese). 
Beijing. Cited 25 July 2021. www.zzj.moa.gov.cn/flfg/202009/
t20200903_6351442.htm

6 �CNCAGR. 2011b. National "Twelfth Five-Year Plan" for the 
Protection and Utilization of Livestock and Poultry Genetic 
Resources. (In Chinese). Beijing. Cited 25 July 2021. www.moa.
gov.cn/govpublic/XMYS/201611/t20161111_5360757.htm

7 �CNCAGR. 2016. National "Thirteenth Five-Year Plan" for the 
Protection and Utilization of Livestock and Poultry Genetic 
Resources. (In Chinese). Beijing. Cited 25 July 2021. www.nahs.
org.cn/xxcm/zybhly/201905/t20190516_339678.htm

8 �Zhang, M., Han, W., Tang, H., Li, G., Zhang, M., Xu, R., Liu, 
Y., Yang, T., Li, W., Zou, J. & Wu, K. 2018. Genomic diversity 
dynamics in conserved chicken populations are revealed by 
genome-wide SNPs. BMC Genomics, 19: 598.  
https://doi.org/10.1186/s12864-018-4973-6

9 �Cendron, F., Perini, F., Mastrangelo, S., Tolone, M., Criscione, 
A., Bordonaro, S., Iaffaldano, N., et al. 2020. Genome-
wide SNP analysis reveals the population structure and the 
conservation status of 23 Italian chicken breeds. Animals, 
10(8): 1441. https://doi.org/10.3390/ani10081441

10 �Luo, W., Luo, C., Wang, M., Guo, L., Chen, X., Li, Z., Zheng, 
M., et al. 2020. Genome diversity of Chinese indigenous 
chicken and the selective signatures in Chinese gamecock 
chicken. Scientific Reports, 10: 14532. https://doi.org/10.1038/
s41598-020-71421-z

11 �Malomane, D.K., Weigend, S., Schmitt, A.O., Weigend, A., 
Reimer, C. & Simianer, H. 2021. Genetic diversity in global 
chicken breeds in relation to their genetic distances to wild 
populations. Genetics Selection Evolution, 53: 36.  
https://doi.org/10.1186/s12711-021-00628-z

12 �Talebi, R., Szmatoła, T., Mészáros, G. & Qanbari, S. 2020. Runs 
of homozygosity in modern chicken revealed by sequence 
data. G3, 10(12): 4615–4623. https://doi.org/10.1534/
g3.120.401860

13 �Zhang, J., Nie, C., Li, X., Ning, Z., Chen, Y., Jia, Y., Han, J., 
et al. 2020. Genome-wide population genetic analysis of 
commercial, indigenous, game, and wild chickens using 600K 
SNP microarray data. Frontiers in Genetics, 11: 543294.  
https://doi.org/10.3389/fgene.2020.543294
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SECTION 5

Conclusions and recommendations

Paolo Ajmone-Marsan, Università Cattolica del Sacro Cuore, Piacenza, Italy

Licia Colli, Università Cattolica del Sacro Cuore, Piacenza, Italy 

Catarina Ginja, BIOPOLIS/CIBIO/InBIO, Universidade do Porto, Vairão, Portugal

Juha Kantanen, Natural Resources Institute Finland, Jokioinen, Finland

Johannes A Lenstra, Utrecht University, the Netherlands

The FAO and the ISAG/FAO Advisory Group on Animal Genetic Diversity recommend that: 
1.	 Countries continue to characterize their animal genetic resources (AnGR) to pro-

vide critical information for their improved management and to contribute to 
implementation of the Global Plan of Action for Animal Genetic Resources. Genetic 
characterization should apply the most advanced methods feasible, currently single 
nucleotide polymorphism (SNP) and whole-genome sequencing (WGS). For most 
current applications in genomic characterization, medium density SNP panels will 
provide sufficient information. Genomic data should be complemented by pheno-
typic characterization, description of the production environment and recording of 
geographic coordinates.

2.	 National genetic resources are investigated by or in close collaboration with 
researchers from the same country while: (i)  respecting the wishes and inter-
ests of the livestock keepers; and (ii)  complying with legislative, administrative 
and policy measures addressing access to genetic resources and the sharing of 
benefits derived from their utilization, as applicable; (iii) complying with measures 
addressing access to traditional knowledge associated with genetic resources 
and the sharing of benefits arising from the utilization of such knowledge with 
indigenous peoples and local communities; and (iv) complying with measures 
addressing access to genetic resources that are held by indigenous peoples and 
local communities and the sharing of benefits arising from the utilization of such 
resources with the peoples and communities concerned.

3.	 FAO, National Coordinators and any National Advisory Committees for AnGR are 
made aware of all diversity projects at any geographic level, so that results can 
contribute to the planning and development of national conservation and sustain-
able use activities, and so that FAO can help facilitate coordination among projects, 
exchange information and promote funding. Contact information for National 
Coordinators can be found at www.fao.org/dad-is/national-coordinators/en.

4.	 Locally adapted genomic resources are considered within an international context, 
which, for marker-based molecular genetic studies, imply the use of the same or 
overlapping sets of genetic markers employed in previous studies, and that, if 
appropriate, data collected from characterization studies are placed in open-access 
repositories, including raw data, associated metadata and analysis pipelines and 
procedures.

http://www.fao.org/dad-is/national-coordinators/en/
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5.	 Studies are guided by one or more specific questions to be answered, recognizing 
that these may be expanded during data analysis. In addition to establishing the 
genetic relationships of populations on the basis of neutral genetic markers, the 
molecular variation involved in phenotypic variation should be searched for, with spe-
cial emphasis on environmental adaptation and disease susceptibility or resistance. 

6.	 Studies of autosomal markers are complemented by the characterization of mito-
chondrial DNA sequences as markers representing the maternal lineages, and of 
Y-chromosomal variation as markers of paternal lineages. 

7.	 Studies of the present patterns of genetic diversity of livestock are complemented, 
where relevant, by the analysis of ancient DNA samples in order to provide a his-
toric context.

8.	 Genotype data are subjected to a thorough quality check and filtering in order to 
identify and remove unreliable data, including duplicates, mislabelled samples and 
outliers associated with breed-level differentiation or undocumented crossbreeding.

9.	 For all breeds studied, heterozygosities or other indicators of overall genetic vari-
ability are calculated to identify breeds with low diversity and anticipate the poten-
tial for bias towards these breeds in multi-breed analyses.

10.	Researchers understand the statistical methods being applied in data analysis and 
critically evaluate the results obtained from computer software. 

11.	Parameters related to within-breed genetic diversity are not simply estimated, 
but that this information be complemented with that of clustering methods and 
demographic modelling to better understand evolutionary processes. By combining 
different approaches, genomics can provide more informed management of popu-
lations by monitoring of within-breed genetic variation and crossbreeding, avoiding 
high levels of inbreeding and ultimately preserving adaptive variation.

12.	Publications of molecular diversity studies are freely accessible. 
13.	The scientific progress is communicated to breeders, livestock industry, the relevant 

government agencies and the general public.
14.	Results from genomic characterization studies are actively utilized in the monitoring 

and management of AnGR. Standardized estimates of effective population sizes 
or other measures of genetic variation could complement data on population 
size for informing countries on the genetic status and risk of extinction of their 
national breed populations. More research is, however, required to determine the 
most appropriate measure of genetic variation. Management of AnGR may include 
purebred genetic improvement and conservation measures, as well as controlled 
crossbreeding that preserves the original populations and maintains environmental 
adaptation.

15.	The advances in molecular technology and bioinformatics continue to be closely 
monitored and relevant innovations be communicated to the AnGR community. 
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Appendix 1

Glossary of technical terms

Johannes A Lenstra, Utrecht University, the Netherlands

Approximate Bayesian Calculation (ABC) Modelling approach based on optimizing the 
agreement between simulated and measured values of summary statistics. 

Admixture The presence of genetic influence of multiple breeds in the genome of an 
individual or a population, due to historical interbreeding.

Allelic richness Measure of genetic diversity obtained by simply counting the number of 
different alleles within a breed or other population of interest. Allelic richness among popula-
tions is only directly comparable if the number of animals genotyped per population is equal.

Analysis of molecular variance (AMOVA) Estimation of the portioning of diversity over 
different hierarchical levels: within breeds, among breeds within regions, between regions, etc.

Amplification refractory mutation system (ARMS) A polymerase chain reaction (PCR) 
during which one of the primer covers a single nucleotide polymorphism (SNP) site in such 
a way that the amplification depend on the SNP allele in the template DNA. 

Ascertainment bias (AB) Systematic distortion in estimates of molecular genetic param-
eters (such as allelic frequencies) due to irregularities in the process used to identify the 
markers. For instance, many SNP in large panels were selected according to their high 
minor allele frequency in international transboundary breeds and can thus underestimate 
the relative diversity in other breeds.

Assembly The process of arranging overlapping individual DNA sequence reads into a 
contiguous whole-genome sequence. 

Autosomes All chromosomes with the exception of the mammalian X or Y or the avian 
W and Z sex chromosomes.

Bayesian analysis Estimation of a likelihood distribution of model parameters on the basis 
of the likelihoods of parameter values in the absence of data (the prior) and the likelihoods 
of the observed data given different values of the model parameters. These estimations 
depend on a specific model and are often achieved by a strategy (like the Multiple Chain 
Monte Carlo simulations) to explore different plausible values of the parameters (the 
“parameter space”). 
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Bead array Silica bead-based microarray for high-density SNP genotyping.

Coalescence analysis Estimation of the divergence times of individual DNA sequences 
since their descendance from a hypothetical most recent common ancestor, often used to 
infer present and past effective population sizes.

Copy number variation (CNV) A type of structural variation in the genome resulting from 
differences in the copy number of chromosomal fragments of up to several megabases in 
length. CNV can be used as a genetic marker and has been associated with differences in 
human phenotypes.

Contig Uninterrupted (“contiguous”) DNA sequence assembled by combining separate 
experimental sequence reads.

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associat-
ed (Cas) endonuclease 9) Method for highly specific and rapid modification of DNA in a 
genome, leading to a new biotechnology revolution called “genome editing.”

Crossing-over Mechanism of creating new genetic variability through recombination of 
chromosomes during meiosis. The newly formed oocyte or sperm chromosome combines 
segments of the two homologous chromosomes originating from the mother and the 
father of the individual in which crossing-over takes place. 

Denaturing gradient gel electrophoresis (DGGE) Method to discern alternative SNP 
alleles (within a strand of PCR amplified nucleic acid) according to differences in their melt-
ing points while passing across an acrylamide gel. 

Depth Approximate number of times that a chromosomal region will be sequenced 
through a whole-genome procedure that involves sequencing and subsequent assembly 
of segments.

Diploid Characteristic of a species defined by its genome containing of two copies of all 
autosomes, the maternal and the paternal copies.

Effective population size (Ne) Hypothetical population size that would generate 
observed values of diversity parameters for a given population if mated randomly and not 
subject to forces such as selection and migration. The Ne corresponds to the number of 
breeding animals per generation and is usually smaller than the actual population count. It 
may be calculated separately for males and females.

Fixation Retainment within a populations of only one allele for a give genetic marker 
which thus becomes homozygous, typically the effect of inbreeding reducing the genetic 
diversity.
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Fixation index (FST) The proportional increase in homozygosity that occurs through pop-
ulation subdivision (for example, the creation of breeds).

Genetic distance A measure of the genetic differences between two populations (or species) 
calculated on the basis of allelic frequencies in both populations/species, or between two 
individuals based either on the identity by state (IBS) of markers or on genomic relationships.

Genetic marker Site in the genome that is variable (polymorphic) within a species. The 
different variants are called alleles, such as the two (usually) different nucleotides of a SNP. 

Genome-wide association study (GWAS) Statistical analysis to detect a correlation 
between the phenotypes of a group of individuals and their genotypes of a given SNP, 
calculated for 50 000 to 1 000 000 SNPs spanning the whole genome; values exceeding a 
significance threshold may indicate that the SNP is near the causative gene.

Genotyping by sequencing (GBS) Sequencing of a subset (reduced representation) of 
the genome, either by a given class of restriction-enzyme fragments or fragments captured 
by hybridization to a set of DNA fragments. Sequencing of, more or less, the same frag-
ments in a panel of animals yields SNPs and at the same time their genotypes. This allows 
genome-wide SNP genotyping for species for which no bead-array has been developed, 
such as wild species. 

Haplotype Combination of alleles of two or more genetic markers on the same DNA 
segment. Haplotypes defined by alleles of markers on mitochondrial DNA and the non-re-
combining part of the Y chromosome are transmitted to offspring. Autosomal and X-chro-
mosomal haplotypes, typically defined by markers in or near the same gene (in which case 
a haplotype represents a gene variant), are transmitted to the offspring only if there is no 
recombination between the markers.

Haplogroup Group of closely related haplotypes.

Haploid Genetic material containing a single copy of the genome, such as sperm cells and 
oocytes. 

Hardy-Weinberg equilibrium (HWE) Ratio for a given marker and population of the 
numbers of homozygote and heterozygote genotypes as predicted by random mating in a 
large population in the absence of selection, migration and mutation.

Heterogametic sex The gender that carries two different sex chromosomes, such as XY 
mammalian males and WZ avian females.

Heterozygosity State of a genetic marker (or any locus) at which both alleles are different.

High-density panel (HDP) SNPs on a bead array, typically containing > 500 000 SNPs. 
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Homogametic sex The gender that carries two identical sex chromosomes, such as XX 
mammalian females and ZZ avian males.

Homozygosity State of a marker (or any locus) at which both alleles are identical. 

Identity by descent (IBD) Identical genotypes of a given marker in two or more individu-
als because the individuals descend from the same ancestor.

Identity by state (IBS) Identical genotypes of a given marker in two or more individuals 
of a population.

Imputation Interpolation of greater-density genotypes (or full sequences) for a given 
(group of) individual(s) on the basis of low-density data for the same individuals and great-
er-density data for a panel of related individuals.

indels Acronym for “inserts and/or deletions” of small amounts of sequence (< 50 base 
pairs) in the genome. Larger insertions and deletions are usually considered to be “struc-
tural variation.” 

Introgression Movement of a particular allele or set of alleles from one population (i.e. 
breed) to another, usually by either deliberate crossbreeding or casual contact between 
neighbouring populations.

Competitive allele specific polymerase chain reaction (KASP) A unique competitive 
allele-specific PCR combined with a fluorescence-based reporting system for the identifi-
cation of genetic variation at the nucleotide level, including SNPs or insertions/deletions.

Kinship The probability that a randomly selected allele from two individuals (at the same 
locus) is identical by descent from a common ancestor (also known as the “coancestry” or 
“coefficient of coancestry”).

Linkage disequilibrium (LD) Distribution of multi-locus genotype combinations in a pop-
ulation for a given pair of markers that is incompatible with independent inheritance, thus 
indicating genetic linkage of the loci.

Linkage disequilibrium (LD) pruning Removal of SNP genotypes from a genome-wide 
SNP dataset in such a way that there is no LD between any pair of SNPs that surpasses a 
user-given threshold.

Linkage disequilibrium (LD) block Region of the genome with high linkage disequilibri-
um (also known as a “haplotype block”.

Locus A distinct region of DNA (often a gene) in the genome.
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Meiosis Cell division in the germline leading to haploid sperm or oocyte cells.

Microsatellite Tandem DNA repeat of a 2 to 5 base pair unit. In most cases, the repeat 
unit is the dinucleotide CA. The number of repeats of a given microsatellite locus is often 
polymorphic within populations, in which case the microsatellite may serve as a genetic 
marker. Also known as STR (simple tandem repeat) or SSR (simple sequence repeat).

Minor allele frequency (MAF) A metric primarily used to evaluate SNPs, corresponding to 
the frequency of the less common of the two alleles (SNPs are usually biallelic). A threshold 
of MAF ≥ 0.01 is sometimes considered to define a SNP. Genetic variability and information 
content of a SNP increases as MAF approaches 0.50 (i.e. the maximum value), and MAF is 
typically among the criteria for the selection of SNPs in commercial panels.

Mitochondrial DNA (mtDNA) The DNA contained in mitochondria, which is widely 
used in phylogenetic studies because of its variability, lack of recombination and maternal 
inheritance. 

Neighbour-joining (NJ) tree Phylogenetic tree constructed on the basis of a genetic-dis-
tance matrix following the principle of identifying pairs of operational taxonomic units 
(OTUs = neighbours) to minimize the total branch length at each stage of clustering of the 
OTUs starting with a starlike tree.

Nucleotide Any of the four types of molecules that make up the structural units of DNA 
(and RNA). For DNA, these molecules are adenine, cytosine, guanine and thymine and are 
often denoted by their first letter (A, C, G, and T, respectively). 

Oligonucleotide A short strand of DNA (commonly referred to as an “oligo”).

Outgroup A more distantly related populations of animals that serves as a reference group 
for a comparison of similar populations.

Phylogeny Evolutionary history of a taxonomic group in terms of successive divergence 
events and mutations or genetic drift.

PLINK A popular and powerful software package (an open-source C/C++ WGAS tool set) 
for handling and analysing large SNP datasets.

Polymorphism The presence of at least two different genetic variants or alleles at a given 
locus.

Primer An oligonucleotide that serves as a starting point for DNA synthesis in PCR. The 
sequences of the primers define the start and the end of the DNA segment to be amplified 
(based on complementarity of the base pair sequences) and during the PCR reaction bind on 
the template DNA (often genomic DNA).
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Principal component analysis (PCA) A method for analysis of a set of variables, such as 
allele frequencies, by calculation of a new set of statistically independent coordinates that 
each corresponds to a weighted combination of the original variables in such a way that each 
coordinate captures as much variation in the original variables as possible. In many datasets, 
a small number of coordinates may explain a large proportion of the initial variability, thus 
increasing efficiency. Plotting the distribution of individuals or breeds in a graph of the first 
two or three coordinates allows for simple visualization of the pattern of diversity. 

Quantitative trait locus (QTL) Locus contributing to the variation in a multigenic quanti-
tative trait (such as milk production or carcass weight).

Read The sequence of an individual segment of chromosomal DNA that is obtained 
through a next generation sequencing procedure.

Resequencing Whole-genome sequencing approach assembled by mapping the reads to 
the genome sequence of a reference genome of the same species. 

Runs of homozygosity (ROH) Stretches of DNA, typically of 1 to 15 Mb, that are (almost) 
completely homozygous. 

Scaffold Non-contiguous combination of contigs that are positioned related to each other on 
the basis of paired ends, mate pairs, optical mapping or other long-range assembly method.

Selection signature Locus with a deviating pattern of diversity, such as a local high fixa-
tion index value in comparison of breeds or a high frequency of a homozygous haplotype 
within a breed, that can be explained by selection acting on the locus. 

Selective sweep Rapid reduction of variability in the DNA sequence flanking a given locus, 
due to selection for one particular favourable allele at that locus.

Sex chromosomes Chromosomes for which the number of copies per cell (in diploid cells, 
normally two) depends on the sex, such as the mammalian X chromosome (two in females, one 
on males), the mammalian Y chromosome (one in males, zero in females), the avian W chromo-
some (zero in males, one in females) and the avian Z chromosome (two in males, one in females).

Single nucleotide polymorphism (SNP) Variation resulting from a point mutation and 
most often corresponding to a biallelic (having two different alleles) marker.

Sliding window A concept associated with the application of a given statistical test to a 
fixed-length segment of the genome (typically measured in either number of SNP or base 
pairs), which is repeatedly applied across the entire genome. The location of the “window” 
is progressively advanced by a chosen number of SNP or base pairs, and the location yield-
ing the highest test of significance is assumed to contain the genes responsible the effects 
for which the test is being applied.
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Structural variation DNA sequence variation based on copy number variations (CNV), 
that is, deletions, duplications and large-scale copy number variants, and on insertions, 
inversions and translocations.

TaqMan assay A PCR-based SNP genotyping assay that uses TaqMan® 5´-nuclease chem-
istry for amplifying and detecting specific polymorphisms in purified genomic DNA samples. 
Each assay allows genotyping of individuals for a SNP. The PCR includes two probes, each 
specific for one of the two SNP alleles and each carrying a different fluorescent reporter 
(e.g. VIC or 6-FAM dye), bind to one of the strands of the PCR product depending on the 
alleles during amplification. A bound probe is degraded by the exonuclease activity of Taq 
polymerase to generate an allele-dependent fluorescent signal, allowing the discrimination 
of two different homozygous alleles, and also the differentiation of homozygous from 
heterozygous alleles.

Transcriptomics The study of all RNA molecules present in a given sample. This may include 
only the messenger RNA (mRNA) which are translated to proteins and non-coding RNA.
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Appendix 2

Example Material Transfer 
Agreement1

MATERIAL TRANSFER AGREEMENT (MTA) 
for genetic material for genotyping

This Material Transfer Agreement is made by and between,

_____________________________________________________________________________
Name of provider of genetic material (“Provider”)

_____________________________________________________________________________
Mailing Address

_____________________________________________________________________________
Other contact information – i.e. telephone and fax numbers, email address

and

_____________________________________________________________________________
Name of recipient of genetic material (“Recipient”).

_____________________________________________________________________________
Mailing Address

_____________________________________________________________________________
Other contact information – i.e. telephone and fax numbers, email address

The parties have agreed as follows: 

1.	 Provider agrees to transfer to Recipient the following (biological) material (“Material”): 
	 Description of the genetic material including type (e.g. DNA, blood, tissue) amount 

(i.e. number of samples) and other information (e.g. means of preservation) 

1	 Example kindly provided by the International Livestock Research Institute (ILRI), Kenya, Nairobi.
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2.	 This Material will be used by Recipient solely in connection with the project 
described as follows: 

	 Description of the project (“Research Project”), including assays to be performed 
(e.g. genomic characterization using a panel of SNPs), use of the data, context in a 
larger project and project sponsors.

3.	 This Material will only be used for research purposes by the Recipient in its lab-
oratory. By requesting the material and signing this agreement, the Recipient is 
considered responsible for appropriate handling of the material and guarantees that 
suitable containment conditions are available and will be applied in the Recipient’s 
laboratory. This Material will not be used for commercial purposes, such as the pro-
duction or sale of products or services. Recipient will promptly, after termination of 
the Research Project, inform Provider of the results of the Research Project.

4.	 To the extent permitted by law, Recipient agrees to treat in confidence, for a 
period of XXXX years from the date of its disclosure, any of the Provider’s written 
information about this Material that is stamped “CONFIDENTIAL” (hereinafter 
“Confidential Information”), except for information that was previously known to 
Recipient or that is or becomes publicly available through no fault of Recipient or 
which is lawfully disclosed to Recipient without a confidentiality obligation or that is 
independently developed by Recipient or its affiliated entities without the benefit of 
any disclosure by Provider. Recipient may publish or otherwise publicly disclose the 
results of the Research Project, provided that in all such oral presentations or written 
publications concerning the Research Project, Recipient will acknowledge Provider’s 
contribution of this Material unless otherwise requested by Provider. 

5. 	This Material is considered proprietary to Provider. Recipient therefore agrees to 
retain control over this Material, and further agrees not to transfer the Material to 
other parties not under its supervision without prior written consent of Provider. 
Provider reserves the right to distribute the Material to others and to use it for its 
own purposes. When the Research Project is completed, the Material will be dis-
posed of as mutually agreed upon by Provider and Recipient.

6. 	This Material IS BEING SUPPLIED TO RECIPIENT WITH NO WARRANTIES, EXPRESS 
OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR 
A PARTICULAR PURPOSE. Provider makes no representations that the use of the 
Material will not infringe any patent or proprietary rights of third parties. Recipient 
agrees to hold harmless and indemnify Provider for all liabilities, demands, damag-
es, expenses and losses arising out of or as a result of Recipient’s use of the Material 
for any purpose.

7. 	Nothing in this Material Transfer Agreement shall or may be construed as granting 
Recipient any right or license to the Material for any use other or further than the 
evaluation described here above.
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8.	 This Agreement shall be governed and construed in accordance with the laws of 
(the country where the ‘Research Project’ was conducted). All disputes arising out 
of or in connection with this Agreement shall be settled in first instance by the 
relevant court of (the country where the ‘Research Project’ was conducted). 

RECIPIENT

Place: _________________________________  Date: ________________________________

By: ___________________________________  Title: _________________________________

PROVIDER

Place: _________________________________  Date: ________________________________

By: ___________________________________  Title: _________________________________
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Appendix 3

Sampling of blood for DNA

DESCRIPTION
This protocol describes how the collection of blood from the jugular vein into a vacutainer 
EDTA containing tubes should be organized. The actual sampling should be done by a 
veterinarian or someone with comparable qualifications valid in the country where the 
sampling is done. 

PERSONNEL
Qualified sampler (such as a veterinarian), and ideally at least two assistants (one to hold 
the animal and another to assist with blood sampling and recording)

NON-VETERINARY EQUIPMENT
Labelled tubes for blood samples
Marker pen with permanent ink
Box or other container to store and transport the samples 
Notebook, a pen and a permanent marker for documentation
Digital camera

TO BE DONE BY THE ASSISTANTS
•	 Obey strictly instructions of the owner or his representative regarding hygienic pre-

cautions and allowable distance to the animals. 
•	 Photograph the animal, especially relevant morphological traits and, if present, the 

labels with registration number.
•	 After receiving the tube, gently invert the tube 4–5 times to mix blood with EDTA 

and use the marker pen to write the animal ID, breed and date on the tube. Keep 
the tube at ambient temperature, but do not expose to the sun or other strong 
light. Preferably, extract DNA within a few days. 

Remember to collect as much information about the animal as possible: owner of the 
animal, animal ID, breed, sampling site and date, age of the animal, animal origin and 
pedigree information as well as known short description of appearance, major diseases  
(or lack of them) or other observations by the owner (see Appendix 4).
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Appendix 4

Example questionnaire to be 
filled during sampling

Questions in bold are generally considered to be mandatory

Animal code  _________________________________________________________________

Farm ID  _____________________________________________________________________

Species code  _________________________________________________________________

AA = Anser anser domesitcus (greylag goose)
AC = Anser cygnoides (swan goose)
AP = Anas platyrhynchos (mallard duck)
BB = Bubalus bubalis (water buffalo)
BF = Bos frontalis (gayal)
BG = Bos grunniens (yak)
BI = Bos indicus (zebu)
BJ = Bos javanicus (banteng, Bali cattle)
BT = Bos taurus (taurine cattle)
CB = Camelus bactrianus (Bactrian camel, two-humped)
CD = Camelus dromedarius (dromedary, one-humped camel)
CH = Capra hircus (goat)
CM = Cairina moschata (muscovy duck) 
EA = Equus asinus (donkey)
EC = Equus caballus (horse)
GG = Gallus gallus (chicken)
LG = Lama glama (llama)
MG = Melea gallopavo (turkey)
OA = Ovis aries (sheep)
SS = Sus Scrofa (pig)
VP = Vicugna pacos (alpaca)
VV = Vicugna vicugna (vicuña)

Species name  ________________________________________________________________

Country  _____________________________________________________________________
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Number of the sample  _______________________________________________________

Official Animal ID (if available)  _________________________________________________

Animal and sampling information

Sex of animal:   female     male

Year of birth of the animal:  ____________________________________________  (YYYY) 

Place (locality) of birth of the animal:  _________________________________________

Date of collection:  _____________________________________________  (DD.MM.YYYY)

Breed’s full name:  ___________________________________________________________

Collector’s name:  ____________________________________________________________

Collector’s institution:  _______________________________________________________

Address of the farm and telephone number (if available)

Country of the farm:  _________________________________________________________

Province/county of the farm:  _________________________________________________

Region of the farm:  __________________________________________________________

Closest town to the farm:  ____________________________________________________

International phone code:  __________________________  (4 digits – e.g.: 0033, 0041, ...)

Area phone code:  _____________________________________________________________

Phone number:  _______________________________________________________________

Type of biological material:   blood     tissue     hair

 other (specify)  _____________________________________________________________

GPS coordinates  ______________________________________________________________
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Appendix 5

Breed questionnaire

To be completed once per breed – complete all questions that are relevant and for which 
information is available)

Common name of breed:  ____________________________________________________

Name of species:  ____________________________________________________________

Transboundary or brand name

Local breed name

Main location

Breed society? Circle:     Yes      No        Year established:

Description of origin and 
development

Population size Year:                                      No. of animals:

N° of reproductive animals Males in natural service

Males used for AI

Breeding females

Trend in breeding females  Increase  Steady  Decrease

Females mated pure (%)

Adult size (male/female) Withers height (cm) M F

Live weight (kg)

N° of farmer/breeders

Main uses (e.g. meat, milk)

Typical management conditions Type

Housing

Feeding

Conservation activities In situ:  Y  /  N                    Ex situ:   Y  /  N                   Cryo:  Y  /  N

Performance comparison Relative to which breed:

much higher in: (e.g. milk yield)

higher in:

equal in:

lower in:

much lower in:
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Software for genomic analysis

Paolo Ajmone-Marsan, Università Cattolica del Sacro Cuore, Piacenza, Italy

Mario Barbato, Università Cattolica del Sacro Cuore, Piacenza, Italy

Licia Colli, Università Cattolica del Sacro Cuore, Piacenza, Italy 

Catarina Ginja, BIOPOLIS/CIBIO/InBIO, Universidade do Porto, Vairão, Portugal

Juha Kantanen, Natural Resources Institute Finland, Jokioinen, Finland

Johannes A Lenstra, Utrecht University, the Netherlands

This is a (incomplete) list of genetic analysis programs with a short specification, grouped 
according to purpose. Although the software are grouped, many of them can be applied 
to multiple purposes. Most programs can be downloaded freely from the internet, along 
with detailed instruction manuals. If not given in this list, details, literature references and 
URL of programs can be found by search engines. An internet search using the program 
name as the keyword may also be done if the links given in this appendix are no longer 
functional. Appearance on this list does not constitute an endorsement of the software by 
the Food and Agriculture Organization of the United Nations.

SOFTWARE FOR MANAGING AND/OR ANALYSING LARGE SNP DATASETS

AlphaPeel – software package for calling, phasing, and imputing genotype and sequence 
data in pedigree populations: https://github.com/AlphaGenes/alphapeel

AlphaFamImpute – genotype calling, phasing, and imputation algorithm for large full-sib 
families in diploid plants and animals which supports individuals genotyped with SNP array 
or GBS data: https://github.com/AlphaGenes/alphafamimpute

ANGSD – utility program for low to medium coverage WGS data: www.popgen.dk/angsd/
index.php/ANGSD

diveRsity – R package (www.r-project.org) that calculates a range of genetic diversity 
statistics: https://cran.r-project.org/web/packages/diveRsity/index.html

KING v2.2.6 – toolset to explore family relationship inference and pedigree error check-
ing, quality control and population substructure identification in genome-wide data:  
www.kingrelatedness.com

https://github.com/AlphaGenes/alphapeel
https://github.com/AlphaGenes/alphafamimpute
http://www.popgen.dk/angsd/index.php/ANGSD
http://www.popgen.dk/angsd/index.php/ANGSD
http://www.r-project.org
https://cran.r-project.org/web/packages/diveRsity/index.html
https://www.kingrelatedness.com
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PLINK 1.8 & 2.0 – clearly documented high-density SNP handling and analysis program; 
requires special format; outputs to formats compatible with many other applications; per-
forms a variety of data handling operations and calculations, such as allele-sharing between 
individuals and coordination analysis: www.cog-genomics.org/plink

SOFTWARE FOR HANDLING GENOMIC DATA

Samtools – suite of programs for working with high-throughput sequencing data, particu-
larly data stored in SAM format files: www.htslib.org

VCFtools – utility program for working with VCF files (Variant call format, a common 
system for storing of genetic variation information): https://vcftools.github.io/index.html

GENOTYPE BY SEQUENCING TOOLS

DECONVQC – repository that contains scripts used to process and manage output 
sequence data and metadata related to Illumina hiseq and miseq machines, including 
running a number of GBS-specific Q/C steps for predominantly GBS-related sequencing 
output; this project is focused on immediate upstream Q/C and sequence delivery, rather 
than custom downstream analyses: https://github.com/AgResearch/DECONVQC

KGD – kinship (genetic relatedness) using GBS (genotyping-by-sequencing) with depth 
adjustment: https://github.com/AgResearch/KGD

TASSEL – software package used to evaluate traits associations, evolutionary patterns, and 
linkage disequilibrium; it can work with genotyping-by-sequencing data: www.maizegenetics.
net/tassel

See also a range of software described in tutorials for analysis of low-coverage whole 
genome sequencing data: https://github.com/nt246/lcwgs-guide-tutorial

PHASING AND IMPUTATION

AlphaImpute – software that combines heuristics and HMM to perform both family-based 
and population-based imputation; requires phased data, but presents the AlphaPhase 
algorithm embedded into the software for phasing: https://alphagenes.roslin.ed.ac.uk/wp/
software-2/alphaimpute/

AlphaPhase – software that performs genotype phasing and minor imputation through 
a heuristic algorithm that employs the concepts of surrogate parents and Erdös distance: 
https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphaphase/

https://www.cog-genomics.org/plink
http://www.htslib.org
https://vcftools.github.io/index.html
https://github.com/AgResearch/DECONVQC
https://github.com/AgResearch/KGD
https://www.maizegenetics.net/tassel
https://www.maizegenetics.net/tassel
https://github.com/nt246/lcwgs-guide-tutorial
https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphaimpute/
https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphaimpute/
https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphaphase/
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Beagle v4.1 – (current v5.1 does not handle genotype likelihood input from sequencing) 
– pedigree-free imputation of genotyping-by-sequencing data: https://faculty.washington.
edu/browning/beagle/b4_1.html

Eagle – highly efficient and fast genotype phasing and minor imputation software that 
uses an HMM-based algorithm combined with a positional Burrows-Wheeler transform:  
https://alkesgroup.broadinstitute.org/Eagle/

fastPhase – performs genotype phasing and minor imputation using HMM fitted via an 
EM algorithm: http://scheet.org/software.html

FImpute – implements a deterministic algorithm that performs both family-based and 
population-based imputation; does not require phased data: https://animalbiosciences.
uoguelph.ca/~msargol/fimpute/

GLIMPSE – phasing and imputation method for large-scale low-coverage sequencing stud-
ies: https://odelaneau.github.io/GLIMPSE

IMPUTE – fast population-based imputation through HMM and positional Burrows-Wheel-
er transform; requires phased data: https://jmarchini.org/software/#impute-5/

Minimac – population-based imputation using HMM with state space reduction; requires 
phased data: https://genome.sph.umich.edu/wiki/Minimac4

SHAPEIT – fast genotype phasing and minor imputation via HMM and positional Bur-
rows-Wheeler transform: https://odelaneau.github.io/shapeit4/

STITCH – R package for Sequencing To Imputation Through Constructing Haplotypes: 
https://github.com/rwdavies/STITCH

GENETIC DISTANCES, TREES AND PLOTS

Beast – performs Bayesian MCMC analysis of molecular sequences, inferring rooted, 
time-measured phylogenies using strict or relaxed molecular clock models; provides a 
framework for testing evolutionary hypotheses without conditioning on a single tree topol-
ogy: http://beast.bio.ed.ac.uk/Main_Page

Mega – calculation of a wide variety of population genetics statistics and convenient tree 
reconstruction program by the most common algorithms except the Bayesian method: 
www.megasoftware.net/

MrBayes – command-line operated for handling nexus sequence files for Bayesian tree 
reconstructions: https://nbisweden.github.io/MrBayes/

https://faculty.washington.edu/browning/beagle/b4_1.html
https://faculty.washington.edu/browning/beagle/b4_1.html
https://alkesgroup.broadinstitute.org/Eagle/
http://scheet.org/software.html
https://animalbiosciences.uoguelph.ca/~msargol/fimpute/
https://animalbiosciences.uoguelph.ca/~msargol/fimpute/
https://odelaneau.github.io/GLIMPSE
https://genome.sph.umich.edu/wiki/Minimac4
https://odelaneau.github.io/shapeit4/
https://github.com/rwdavies/STITCH
http://beast.bio.ed.ac.uk/Main_Page
http://www.megasoftware.net/
https://nbisweden.github.io/MrBayes/
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neigborNet – R package for construction of phylogenetic networks based on the Neigh-
bour-Joining algorithm: www.rdocumentation.org/packages/phangorn/versions/2.5.5/topics/
neighborNet

Network – constructs Median-joining networks of haplotype data; generates evolutionary 
trees and networks from genetic and other data: www.fluxus-engineering.com/sharenet.htm

Netview – R package for network visualization of individuals of breeds using maximally k 
nearest neighbours: https://github.com/esteinig/netview

Phylip – classical command-line comprehensive package requiring its own file format for 
tree reconstruction according to the most common algorithms, but offering fewer options 
than PAUP: http://phylip.com

QPTools – package within AdmixTools https://github.com/DReichLab/AdmixTools  
(or https://github.com/uqrmaie1/admixtools) and ADMIXTUREGRAPH an R package 
https://github.com/mailund/admixture_graph; optimize the branch lengths and admix-
ture proportions from Admixture graphs.

Relate – estimates genome-wide genealogies in the form of trees, based on inferred hap-
lotypes: https://myersgroup.github.io/relate/

SNAPP – uses a likelihood-based approach to estimate the “true” phylogenetic tree of 
populations based on the genetic variation of markers across the genome; built upon the 
Beast software: www.beast2.org/snapp

SplitsTree – constructs neighbour-joining tree, SplitsTree graphs and NeighborNet graphs; 
aceepts Nexus files; many graphical output options: www-ab.informatik.uni-tuebingen.de/
software/splitstree4/welcome.html

Treemix – constructs maximum-likelihood trees based on the covariance of allelic fre-
quencies; attempt to infer the number of admixture events among the populations:  
https://speciationgenomics.github.io/Treemix

Tsinfer – develops a tree sequence based on inferred haplotypes: https://github.com/
tskit-dev/tsinfer

PRINCIPAL COMPONENT ANALYSIS

Eigensoft – analyses population structure by combining statistical genetics with principal 
components analysis (Eigenstrat) to explicitly model ancestry differences between cases 
and controls along continuous axes of variation: https://reich.hms.harvard.edu/software

https://www.rdocumentation.org/packages/phangorn/versions/2.5.5/topics/neighborNet
https://www.rdocumentation.org/packages/phangorn/versions/2.5.5/topics/neighborNet
http://www.fluxus-engineering.com/sharenet.htm
https://github.com/esteinig/netview
http://phylip.com/
https://github.com/DReichLab/AdmixTools
https://github.com/uqrmaie1/admixtools
https://github.com/mailund/admixture_graph
https://myersgroup.github.io/relate/
https://www.beast2.org/snapp
http://www-ab.informatik.uni-tuebingen.de/software/splitstree4/welcome.html
http://www-ab.informatik.uni-tuebingen.de/software/splitstree4/welcome.html
https://speciationgenomics.github.io/Treemix
https://github.com/tskit-dev/tsinfer
https://github.com/tskit-dev/tsinfer
https://reich.hms.harvard.edu/software
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POPULATION ASSIGNMENT AND CLUSTER ANALYSIS

Admixture – produces results for unsupervised clustering (i.e. without prior population 
information) comparable or identical to Structure, but faster by means of a more efficient 
algorithm: https://dalexander.github.io/admixture/

Baps – comparable to Structure but with increased flexibility in the definitions of levels at 
which genetic structure may exist: https://github.com/ocbe-uio/rBAPS or https://swmath.org/
software/35649

Clumpp – accepts the output of Structure or other clustering programs in order to align 
the output of different runs: https://rosenberglab.stanford.edu/clumpp.html

Distruct – reads in tables of genomic components from the Structure output and files 
of options set by the user in order to provide graphical output of the Structure clustering: 
https://rosenberglab.stanford.edu/distruct.html

fineStructure – clustering program on the basis of ChromoPaint-based haplotype sharing: 
https://people.maths.bris.ac.uk/~madjl/finestructure/finestructure_info.html

Frappe – estimates individual ancestry proportions – comparable to Admixture: https://med.
stanford.edu/tanglab/software/frappe.html

Geneland – clustering program that can make use of both geographic and genetic infor-
mation to estimate the number of populations in a dataset and delineate their spatial 
organization: https://rdrr.io/cran/Geneland/ or https://i-pri.org/special/Biostatistics/Software/
Geneland

Instruct – joint inference of population structure and inbreeding rates, eliminating the 
assumption of Hardy-Weinberg equilibrium and especially applicable in cases of self-fertili-
zation or inbreeding: http://cbsuapps.tc.cornell.edu/InStruct.aspx

LEA – R package, estimates admixture proportions similar to Structure or Admixture soft-
ware, but with reduced computation time; less affected by the inbreeding of the analysed 
populations: http://membres-timc.imag.fr/Olivier.Francois/LEA/software.htm

MixMapper – refines and existing hierarchical tree of breeds with additional, admixed 
populations. Optimizes topology, sources of gene flow and branch lengths: http://cb.csail.
mit.edu/cb/mixmapper/

Spaida and Spaign – assigns individual animals to genetic clusters based on spatial auto-
correlations: http://notendur.hi.is/~snaebj/programs.html

https://dalexander.github.io/admixture/
https://github.com/ocbe-uio/rBAPS
https://swmath.org/software/35649
https://swmath.org/software/35649
https://rosenberglab.stanford.edu/clumpp.html
https://rosenberglab.stanford.edu/distruct.html
https://people.maths.bris.ac.uk/~madjl/finestructure/finestructure_info.html
https://med.stanford.edu/tanglab/software/frappe.html
https://med.stanford.edu/tanglab/software/frappe.html
https://rdrr.io/cran/Geneland/
https://i-pri.org/special/Biostatistics/Software/Geneland
https://i-pri.org/special/Biostatistics/Software/Geneland
http://cbsuapps.tc.cornell.edu/InStruct.aspx
http://membres-timc.imag.fr/Olivier.Francois/LEA/software.htm
http://cb.csail.mit.edu/cb/mixmapper/
http://cb.csail.mit.edu/cb/mixmapper/
http://notendur.hi.is/snaebj/programs.html
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Structure – popular and user-friendly program for an informative visualization of patterns 
of diversity. Reconstructs model-based subdivision of individual genotypes into a user-spec-
ified number of clusters (k) by optimizing of Hardy-Weinberg equilibrium and minimizing 
linkage disequilibrium within clusters; estimates proportion of individual genomes derived 
from the inferred clusters. Clusters may correspond to ancestral components, but also to a 
relatively homogeneous breed or group of breeds. Optionally allows for admixture, linkage 
between markers, codominant markers, incorporation of prior population information and 
incorporation of spatial information. It is substantially slower than Admixture but has more 
options: https://web.stanford.edu/group/pritchardlab/structure.html

Whichrun – assigns individuals to populations based upon maximum likelihood theory: 
https://whichrun.software.informer.com/4.1/ or https://mybiosoftware.com/tag/whichrun

IDENTIFICATION OF SELECTION SIGNATURES

cgaTOH – detection of intra-population selection signatures based on runs of homozygo-
sity: https://github.com/hernanmd/cgaTOH.2018 

HapFLK – implements the Lewontin and Krankakauer tests to identify inter-population sig-
natures based on individual loci (FLK) or haplotypes (hapFLK): https://pypi.org/project/hapflk/

HierFstat – R package for detection of inter-population selection signatures based on fixa-
tion indexes (FST): https://cran.r-project.org/web/packages/hierfstat/index.html

PCAdmix – estimation of local ancestry by applying PCA based upon phased haplotypes: 
https://bio.tools/pcadmix

rehh – performs tests based on extended haplotype homozygosity to detect genomic 
regions subject to selection within and across populations: http://cran.r-project.org/web/
packages/rehh/index.html

SweeD – identification of intra-population selection signatures based on the site frequency 
spectrum: https://cme.h-its.org/exelixis/web/software/sweed/

Sweep – large-scale intra-population analysis of haplotype structure in genomes for the 
primary purpose of detecting evidence of natural selection: https://software.broadinstitute.
org/mpg/sweep/

Selscan – detection of intra-population selection based on extended haplotype homozy-
gosity (EHH) and integrated haplotype score (iHS) methods; detection of inter-popula-
tion selection based on cross population extended haplotype homozygosity (XP-EHH):  
https://github.com/szpiech/selscan

https://web.stanford.edu/group/pritchardlab/structure.html
https://whichrun.software.informer.com/4.1/
https://mybiosoftware.com/tag/whichrun
https://github.com/hernanmd/cgaTOH.2018
https://pypi.org/project/hapflk/
https://cran.r-project.org/web/packages/hierfstat/index.html
https://bio.tools/pcadmix
http://cran.r-project.org/web/packages/rehh/index.html
http://cran.r-project.org/web/packages/rehh/index.html
https://cme.h-its.org/exelixis/web/software/sweed/
https://software.broadinstitute.org/mpg/sweep/
https://software.broadinstitute.org/mpg/sweep/
https://github.com/szpiech/selscan
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LANDSCAPE GENOMICS

LFMM2 – applies latent factor mixed models to test for association between genotypes 
and explanatory variables that can include environmental or geographical measures:  
https://bcm-uga.github.io/lfmm/

BAYENV – applies Bayesian method to estimate the pattern of covariance in allele frequen-
cies between populations and then uses this as a null model for a test of environmental 
variables at individual SNPs: https://bitbucket.org/tguenther/bayenv2_public/

BAYPASS – identifies genetic markers subjected to selection or associated with population-spe-
cific covariates, including geographical and environmental variables: www1.montpellier.inra.fr/
CBGP/software/baypass/index.html

BAYESCENV – performs FST-based genome scans to detect local adaptation: https://github.
com/devillemereuil/bayescenv

R.SamBada – R-package providing a pipeline for landscape genomic analysis, spanning 
from the retrieval of environmental variables at sampling locations to gene annotation 
using the Ensembl genome browser. This application standardizes the landscape genom-
ics pipeline, eases the search for candidate genes involved in adaptation processes, and 
enhances reproducibility of the studies: https://github.com/SolangeD/R.SamBada

GENOME-WIDE ASSOCIATION STUDIES

bayesR – Bayesian hierarchical model for complex trait analysis, including GWAS:  
https://github.com/syntheke/bayesR 

BOLT – applies linear mixed-models for genetic association testing; includes an application 
that applies an algorithm for restricted maximum-likelihood estimation of variance compo-
nents: https://alkesgroup.broadinstitute.org/BOLT-LMM/

EMMAX – performs large-scale GWAS while correcting for population sampling structure: 
https://genome.sph.umich.edu/wiki/EMMAX

FaST-LMM – genome-wide association testing, genomic prediction, heritability analysis:  
https://github.com/fastlmm/FaST-LMM/

GCTA – estimates genomic relationships, performs association testing, heritability analysis 
and variance partitioning: https://cnsgenomics.com/software/gcta

https://bcm-uga.github.io/lfmm/
https://bitbucket.org/tguenther/bayenv2_public/
http://www1.montpellier.inra.fr/CBGP/software/baypass/index.html
http://www1.montpellier.inra.fr/CBGP/software/baypass/index.html
https://github.com/devillemereuil/bayescenv
https://github.com/devillemereuil/bayescenv
https://github.com/SolangeD/R.SamBada
https://github.com/syntheke/bayesR
https://alkesgroup.broadinstitute.org/BOLT-LMM/
https://genome.sph.umich.edu/wiki/EMMAX
https://github.com/fastlmm/FaST-LMM/
https://cnsgenomics.com/software/gcta
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GCTB – a collection of Bayesian linear mixed models for complex trait analyses using 
genome-wide SNP data; simultaneously estimates joint effects of the SNP and the back-
ground genetic architecture: https://cnsgenomics.com/software/gctb

GEMMA – applies linear mixed models for association testing, multi-trait analyses and 
heritability analysis: https://github.com/genetics-statistics/GEMMA

JWAS – performs routine single-trait and multi-trait genomic prediction and GWAS 
using Bayesian mixed effects models and either complete or incomplete genomic data:  
https://reworkhow.github.io/JWAS.jl/latest/

LFMM2 – fits latent factor mixed models, estimating factors based on an exact least squares 
approach: https://rdrr.io/bioc/LEA/man/lfmm2.html (also suitable for landscape genomics)

SPECIAL PURPOSE PROGRAMS

AlphaAssign – parentage assignment algorithm that works with SNP array and GBS data: 
https://github.com/AlphaGenes/alphaassign

Rannala software – multiple packages that perform various specific functions, including 
LD mapping, data simulation and detecting migration by using multilocus genotypes: 
www.rannala.org

SNeP – performs estimations of effective population size trajectories over time by using 
genome-wide SNP data: https://sourceforge.net/projects/snepnetrends

SPAGeDi – characterizes the spatial genetic structure of individuals or populations based on 
genetic marker data; estimates genetic distance and other basic statistics: http://ebe.ulb.ac.be/
ebe/Software.html

SIMULATION, MODELLING AND PARAMETER ESTIMATION

ABC and ABCRF – R packages that perform approximate Bayesian computation (ABC) 
for model selection and parameter inference, the latter by utilizing random forests: 
https://cran.r-project.org/package=abc and https://rdrr.io/cran/abcrf

ABCtoolbox – a series of open-source programs that peforms all of the steps of a standard 
ABC analysis; offers the user the opportunity to choose among several algorithms: https://
bitbucket.org/wegmannlab/abctoolbox/wiki/Home

dadi – simulates the joint frequency spectrum of genetic variation among several popula-
tions: https://dadi.readthedocs.io/en/latest/

https://cnsgenomics.com/software/gctb
https://github.com/genetics-statistics/GEMMA
https://reworkhow.github.io/JWAS.jl/latest/
https://rdrr.io/bioc/LEA/man/lfmm2.html
https://github.com/AlphaGenes/alphaassign
http://www.rannala.org
https://sourceforge.net/projects/snepnetrends
http://ebe.ulb.ac.be/ebe/Software.html
http://ebe.ulb.ac.be/ebe/Software.html
https://cran.r-project.org/package=abc
https://rdrr.io/cran/abcrf
https://bitbucket.org/wegmannlab/abctoolbox/wiki/Home
https://bitbucket.org/wegmannlab/abctoolbox/wiki/Home
https://dadi.readthedocs.io/en/latest/
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FastSimcoal2 – flexible modelling and simulation software that allows comparison of alter-
native tree construction models: http://cmpg.unibe.ch/software/fastsimcoal2/

PSMC and MSMC – R packages for implementing the pairwise sequentially Markov 
coalescent and multiple sequential Markov coalescent methods for modelling population 
histories: https://github.com/lh3/psmc and https://github.com/stschiff/msmc

MULTIPURPOSE PROGRAMS ORIGINALLY DEVELOPED FOR 
MICROSATELLITE DATA

GenAlEx – estimates of variability based on allele and genotypic frequencies, genetic 
distances, Principal Component Analysis, formatting of data for other software; runs as a 
Microsoft Excel add-in. https://biology-assets.anu.edu.au/GenAlEx/Welcome.html

Genepop – undertakes simple population genetic analyses including tests for Hardy-Wein-
berg equilibrium, estimation of LD, and population differentiation: https://genepop.curtin.
edu.au/

http://cmpg.unibe.ch/software/fastsimcoal2/
https://github.com/lh3/psmc
https://github.com/stschiff/msmc
https://biology-assets.anu.edu.au/GenAlEx/Welcome.html
https://genepop.curtin.edu.au/
https://genepop.curtin.edu.au/
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Annex 7

Genotyping arrays available 
by species across different 
genotyping platforms2 

Kathiravan Periasamy, International Atomic Energy Agency, Vienna, Austria

Species Platform Array name
Marker 
density SNPs (N)

SNP ascertainment and/
or validation breeds/
populations

Special features/potential 
applications

Buffalo Affymetrix 
Axiom

Buffalo 
Genotyping 
Array

Medium 89 988
4 breeds (Mediterranean 
buffalo, Murrah, 
Jaffarabadi and Nili-Ravi)

Useful for biodiversity 
research, GWAS

Camelid – 
Bactrian

Affymetrix 
Axiom

Camelid-
Multispecies 
Array

Medium

59 938 Bactrian populations from 
Mongolia and China

Useful for biodiversity 
research, GWAS, mapping 
studies

Camelid – 
Dromedary 59 958

Dromedary populations 
from Algeria, Ethiopia, 
Mauritania, Morocco, 
Sudan, United Arab 
Emirates

Useful for biodiversity 
research, GWAS, mapping 
studies

Camelid – 
New World 60 000

Alpaca (Huacaya and 
Suri), Llama and Vicugna 
populations from Peru, 
Chile, Bolivia (Plurinational 
State of), Ecuador

Useful for biodiversity 
research, GWAS, mapping 
studies

Cattle Illumina 
Infinium

Bovine
LD v2.0-
Genotyping 
Beadchip

Low 7 931

26 breeds (Angus, Ayrshire, 
Beefmaster, Blonde d’ 
Aquitaine, Brahman, 
Brown Swiss, Charolais, 
Fleckvieh, Friesian, 
Gelbvieh, Guernsey, 
Hereford, Holstein, Jersey 
(United States of America 
& Denmark), Limousin, 
Montbeliard, N’dama, 
Normande, Norwegian Red, 
Red Angus, Red Dairy, Red 
Danish (Denmark, Finland, 
Sweden), Santa Gertrudis)

Useful for genomic 
selection, genotype 
imputation, parentage 
verification, biodiversity 
research; includes 121 
parentage markers 

Cattle

Illumina 
Infinium

Bovine 
SNP50v3-
Beadchip

Medium 53 218

17 breeds (Angus, 
Beefmaster, Gir, Nelore, 
Brahman, Charolais, 
Guernsey, Hereford, 
Holstein, Jersey, Limousin, 
N’dama, Piedontese, Red 
Angus, Romagnola, Santa 
Getrudis, Sheko)

Useful for genomic 
selection, GWAS, parentage 
verification, biodiversity 
research; includes 116 
parentage markers 

Affymetrix 
Axiom Bovine Medium 54 560

10 breeds (Holstein, Angus, 
Jersey, Fleckvieh, Hereford, 
Limousin, Romagnola, 
Brahman, Nelore, Gir)

Useful for biodiversity 
research, GWAS, parentage 
verification; consists of 
191 ISAG core markers for 
bovine parentage

(Cont.)

2	 Appearance on this list does not constitute an endorsement of the platform or array by the Food and Agriculture Organization 

of the United Nations.
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Species Platform Array name
Marker 
density SNPs (N)

SNP ascertainment and/
or validation breeds/
populations

Special features/potential 
applications

Cattle Affymetrix 
Axiom

BovMDv3 
Array Medium 63 648

20 breeds; Bos taurus 
(Afrikander, Angus, 
Ayrshire, Boran, Blonde 
d’Aquitaine, Brown Swiss, 
Simmental, Hanwoo, 
Hereford, Holstein, 
Japanese Black, Jersey, 
Limousine, Norwegian 
Red, Rouge des Pres, 
Romagnola, Tuli); Bos 
indicus (Brahman, Nelore, 
Gir).

Useful for dairy evaluation 
(genomic selection), 
biodiversity research, 
copy number variations, 
parentage verification, 
markers for deleterious 
recessive traits, fertility 
traits and traceability; 
consists of 13K Bos indicus 
SNPs; includes several 
hundred SNPs that are 
optimized for short tandem 
repeat (STR) imputation 

Cattle

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP Angus-
GS-Beadchip Medium 75 000 Angus

Breed specific SNP 
array for breeding and 
improvement of Angus 
cattle; includes 22000 new 
SNP markers with 7800 
from Angus sequences that 
are novel to all available 
arrays; also includes 
markers associated with 
fertility, feed efficiency, 
marbling, calving ease 
and vaccine response; has 
markers for detection 
of genetic conditions 
like arthrogryposis 
multiplex, neuropathic 
hydrocephalus contractural 
arachnodactyly, 
osteoporosis, 
oculocutaneous 
hypopigmentation, 
developmental duplication, 
BVDV, M1, D2

Illumina 
Infinium

GGP Bovine 
100K Medium 100 000

Derived from the original 
Illumina BovineHD-
Genotyping and Bovine 
SNP50 Beadchip

Useful for GWAS, genetic 
evaluations, biodiversity 
research and parentage 
verification; has 85 percent 
overlap with the Council 
of Dairy Cattle Breeding 
(CDCB) virtual evaluation 
and 35 000 SNPs overlap 
with the Canadian Dairy 
Network (CDN) Evaluation; 
average imputation 
accuracy to the Illumina 
Bovine HD is > 99.5 percent 
in Angus and Holstein 
populations

Cattle

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP Bovine 
150K Medium 150 000 NA

Useful for GWAS, genetic 
evaluations, biodiversity 
research, parentage, 
detection of markers 
for recessive disorders 
including fetal death and 
abnormalities that interfere 
with growth rate in cattle

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP 
Bovine-F250 High 235 000 NA

Useful for functional 
genomic studies in 
cattle, genomic selection, 
genotype imputation; 
includes SNPs enriched 
for functional variants 
such as non-synonymous, 
frameshift and premature 
stop codons

(Cont.)
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Species Platform Array name
Marker 
density SNPs (N)

SNP ascertainment and/
or validation breeds/
populations

Special features/potential 
applications

Cattle

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP Bovine 
150K Medium 150 000 NA

Useful for GWAS, genetic 
evaluations, biodiversity 
research, parentage, 
detection of markers 
for recessive disorders 
including fetal death and 
abnormalities that interfere 
with growth rate in cattle

Cattle Illumina 
Infinium

BovineHD-
Genotyping-
Beadchip

High 777 962

20 breeds; Bos taurus 
(Angus, Bonde d’Aquitaine, 
Brown Swiss, Charolais, 
Guernsey, Hereford, 
Holstein, Jersey, Lagunaire, 
Limousin, Montbeliad, 
N’dama, Norwegian Red, 
Piedontese, Red Angus, 
Romagnola, Senepol, 
Simental, Wagyu); Bos 
indicus (Brahma, Gir, 
Nelore); Crossbreds 
(Beefmaster, Brangus, 
Santa Gertrudis, Sheko)

Useful for genomic 
selection, GWAS, QTL 
identification, biodiversity 
research, mapping

Cattle – 
Zebu

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP Indicus Medium 35 090

Brahman, Guzera, Gyr, 
Nelore, Droughtmaster, 
Santa Gertrudis, Tropical 
Composite, etc.

Useful for biodiversity 
research, GWAS, QTL 
identification

Chicken Affymetrix 
Axiom

ChickenHD 
Genotyping 
Array

High 580 961

Commercial broiler 
(Aviagen), commercial 
layers (Hyline, Synbreed), 
Experimental inbred (IAH 
line), Non-selected (J. Line 
Roslin)

Useful for genetic 
evaluation of layers and 
broilers, GWAS, mapping 
and biodiversity research; 
includes markers associated 
with wild outbred lines

Goat

Illumina 
Infinium

Goat SNP50-
Genotyping-
Beadchip

Medium

50 000 Saanen, Alpine, Creole, 
Boer, Kacang, and Savanna

Useful for biodiversity 
research, GWAS, genome 
mapping

Affymetrix 
Axiom

Ovicap 
Mutispecies 
Array

60 034

Milk and mixed breeds 
(Alpine, Saanen and 
Creole); Meat breeds (Boer, 
Katjang and Savanna); 
Norwegian dairy goat

Useful for biodiversity 
research, GWAS, parentage 
verification, mapping 
studies; includes 583 
markers for parentage 
testing and traceability

Horse

Illumina 
Infinium

Equine
SNP50

Medium

54 602

15 breeds (Andalusian, 
Arabian, Belgian, Franches 
Montagnes, French Trotter, 
Hanoverians, Icelandic, 
Mongolian, Norwegian 
Fjord, Quarter Horse, 
Saddlebred, Standardbred, 
Swiss Warmblood, 
Thoroughbred, Hokkaido)

Useful for biodiversity 
research, GWAS, genomic 
selection, identification of 
QTL, mapping.

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP Equine 71 947 Derived from Illumina’s 
Equine SNP50 Beadchip

Useful for biodiversity 
research, GWAS, genomic 
selection, identification of 
QTL, general mapping

EquineHD 
Genotyping 
Array

Affymetrix 
Axiom High 670 796

32 breeds (including 
Arabian, Belgian, Black 
Forest, Duelmener, Edlblu-
Haflinger, French Trotter, 
Haflinger, Hanoverian, 
Icelandic, Lusitano, 
Marremanno, Mongolian, 
Morgan, Old-Oldenburger, 
Quarter Horse, 
Sorraia, Standardbred, 
Süddeutsches Kaltblut, 
Thoroughbred and Welsh)

Useful for biodiversity 
research, GWAS, 
association mapping, 
genomic prediction of 
disease risk

(Cont.)
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Species Platform Array name
Marker 
density SNPs (N)

SNP ascertainment and/
or validation breeds/
populations

Special features/potential 
applications

Multiple 
cattle, pig, 
chicken, 
horse, goat 
and sheep

Affymetrix 
Axiom

IMAGE001 
Multispecies 
Array

Low
60 000 total 
10 000 per 
species

Many breeds/per species 
(from publicly available 
arrays and project data)

Designed for assessment 
of gene bank collections, 
but also useful for 
biodiversity research, causal 
mutation known traits, 
parentage study, ancestral 
information

Multiple 
buffalo, 
rabbit, 
duck, quail, 
pigeon and 
honey bee

Affymetrix 
Axiom

IMAGE002 
Multispecies 
Array

Low
60 000 total 
10 000 per 
species

Many breeds/per species 
(from publicly available 
arrays and project data)

Designed for assessment 
of gene bank collections, 
but also useful for 
biodiversity research, causal 
mutation known traits, 
parentage study, ancestral 
information

Pig

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP 
Porcine50K

Medium

51 000 NA

Useful for biodiversity 
research, GWAS, parentage 
verification, evaluation of 
pure line, identification 
of multi-line reference 
populations, genetic 
evaluation; includes 
markers for detection of 
Porcine Stress syndrome 
and Rendement Napole 
(RN).

Affymetrix 
Axiom

Porcine-
Breeder 
Array

55 150

Same as Axiom-PorcineHD 
Genotyping Array, but SNP 
selection was targeted 
towards commercial pig 
breeds

Useful for genomic and 
trait selection, parentage 
testing; includes 64 ISAG 
core parentage markers, 
42 trait-specific markers 
selected by USDA3 and 
targeted for commercial 
breeds including Large 
White, Landrace, Duroc 
and Piétrain

Illumina 
Infinium

Porcine 
SNP60 v2 
Genotyping 
Beadchip

64 232

Berkshire, Duroc, 
Hampshire, Landrace, Large 
White, Meishan, Pietrain, 
Synthetic (Large White and 
Pietrain), Wild boar

Useful for biodiversity 
research, GWAS, genomic 
selection, identification 
of QTL, mapping, genetic 
evaluation, linkage 
disequilibrium studies

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP 
Porcine80K ~80 000 NA

Useful for biodiversity 
research, GWAS, parentage 
verification, evaluation of 
pure line, identification 
of multi-line reference 
populations, genetic 
evaluation

Pig Affymetrix 
Axiom

PorcineHD 
Genotyping 
Array

High 658 692

27 domestic and 16 
wild boar populations; 
Commercial domestic 
European (Large White, 
Landrace, Piétrain, Duroc, 
Hampshire); Traditional/
Rare domestic European 
(Angler Sattelschwein, 
British Saddleback, 
Bunte Bentheimer, 
Casertana, Cinta Senese, 
Gloucester Old Spot, Large 
Black, Linderodssvin, 
Mangalica, Middle White, 
Negro Iberico, Retinto, 
Tamworth); European 
wild boar; Asian domestic 
(Jiangquhai, Jinhua, Leping 
Spotted, Meihan, Thai 
Native, Wannan Spotted, 
Wuzishan, Xiang, Zang); 
Asian wild boar (China, 
Japan, Thailand)

Useful for biodiversity 
research, GWAS, high 
resolution genetic 
mapping, QTL analysis, 
genomic prediction

(Cont.)

3	 U.S. Department of Agriculture.
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Species Platform Array name
Marker 
density SNPs (N)

SNP ascertainment and/
or validation breeds/
populations

Special features/potential 
applications

Sheep

Affymetrix 
Axiom

OvineLD-
Genotyping 
Array

Low 11 196 Belclare, Charollais, Suffolk, 
Texel, Vendeen

Useful for biodiversity 
research, GWAS, parentage 
verification, breed 
assignment, aneuploidy 
detection, mating designs, 
traceability.

Affymetrix 
Axiom

Ovine50K-
Genotyping 
Array

Medium

50 000

74 breeds sampled from 
Asian, African, South-West 
Asian, Caribbean, North 
American, South American, 
European and Australasian 
sheep

Useful for biodiversity 
research, GWAS, parentage 
verification, breed 
assignment, aneuploidy 
detection, mating designs, 
traceability.

GeneSeek 
Genomic 
Profiler 
(Illumina-
Infinium)

GGP 
Ovine50K 50 000 NA

Useful for biodiversity 
research, GWAS, genomic 
selection, identification of 
QTL, genetic evaluation, 
linkage disequilibrium 
studies

Sheep

Affymetrix 
Axiom

Ovicap 
Mutispecies 
Array

Medium

54 236

74 breeds sampled from 
Asian, African, South-West 
Asian, Caribbean, North 
American, South American, 
European and Australasian 
sheep

Useful for biodiversity 
research, GWAS, mapping 
studies

Illumina 
Infinium

Ovine 
SNP50-
Genotyping-
Beadchip

54 241

 > 70 breeds sampled from 
Asian, African, South-West 
Asian, Caribbean, North 
American, South American, 
European and Australasian 
sheep

Useful for biodiversity 
research, GWAS, genomic 
selection, genetic 
evaluation, linkage 
disequilibrium studies
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Annex 8

Bioinformatics pipeline for 
quality control of genomic data 

Mario Barbato, Università Cattolica del Sacro Cuore, Piacenza, Italy

Quality control (QC) of large datasets of single nucleotide polymorphisms is an important 
step to ensure reliable results. Fortunately, a large collection of software has already been 
developed to aid in this task. This appendix describes the step-by-step application of a  
“QC pipeline” that combines the use of command line and R commands to manipulate and 
perform quality checks on binary PLINK formatted data. This pipeline outlines a standard 
approach to quality check genotype data. However, parameters and QC steps and their 
order might change when applied to different data or depending on downstream analyses. 
Finally, although some of the visual checks and simplest calculations might be performed 
using other statistical tools (e.g. Excel spreadsheet) the use of R is highly recommended 
due to its scalability.

REQUIREMENTS
The dataset used here is a collection of 60k SNP chip genotype data of Italian goat 
breeds (Cortellari et al., 2021). The dataset is available in binary PLINK format:  
Cortellari2021.{bed, bim, fam} at https://data.mendeley.com/datasets/hnd59x-
6gmg/1

The software used are:
PLINK v1.9 www.cog-genomics.org/plink
PLINK v2.0 www.cog-genomics.org/plink/2.0
R v4.1.0 www.r-project.org

All PLINK commands are executed in the system command line terminal (identified here by 
a preceding “$” symbol). R commands require the R console (identified here by a preceding 
“>” symbol).

The R package data.table is required to efficiently load file content in R.
> install.packages(“data.table”)

> library(data.table)

 

https://data.mendeley.com/datasets/hnd59x6gmg/1
https://data.mendeley.com/datasets/hnd59x6gmg/1
https://www.cog-genomics.org/plink/
https://www.cog-genomics.org/plink/2.0/
https://www.r-project.org/
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QUALITY CONTROL
Missingness
The first step is to determine the rates of missing data both at the individuals and loci 
level. The --missing flag is applied to compute both using one single command. The 
chromosomal setup (29 autosomes in goats) can be specified using the --cow flag (cattle 
also have 29 autosomes).

$ plink --cow --bfile Cortellari2021 --missing --out Cortellari2021

FIGURE A8.1
Screenshot following the test for missingness

 

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021.log. 
Options in effect: 
  --bfile Cortellari2021 
  --cow 
  --missing 
  --out Cortellari2021 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
53347 variants loaded from .bim file. 
1071 cattle (16 males, 51 females, 1004 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021.nosex . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1068 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.977196. 
--missing: Sample missing data report written to Cortellari2021.imiss, and 
variant-based missing data report written to Cortellari2021.lmiss. 

Sources: Author’s own elaboration.

The command produces two files with extensions, .lmiss and .imiss, containing loci 
and individual missingness information for loci and individual animals, respectively.

The missingness distribution is then assessed further by using R:
> imiss <- fread(“Cortellari2021.imiss”, select = 6)

> lmiss <- fread(“Cortellari2021.lmiss”, select = 5)

> par(mfrow = c(1, 2))

> hist(imiss$F_MISS, xlab = “missingness freq”, main = “individual 

missingness”, breaks = 50)

> hist(lmiss$F_MISS, xlab = “missingness freq”, main = “loci 

missingness”, breaks = 50)

> par(mfrow = c(1, 1))
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To maximize the number of individuals, first prune for loci missingness, followed by indi-
vidual missingness. Pruning for missingness can be performed in PLINK using the --geno 
and --mind for loci and individuals, respectively.

$ plink --cow --bfile Cortellari2021 --geno 0.05 --make-bed --out 

Cortellari2021_g05

FIGURE A8.2
Distributions of missingness according to individuals and loci
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Sources: Author’s own elaboration.
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$ plink --cow --bfile Cortellari2021_g05 --mind 0.05 --make-bed 

--out Cortellari2021_g05m05

FIGURE A8.3
Screenshot following pruning for loci missingness

 

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05.log. 
Options in effect: 
  --bfile Cortellari2021 
  --cow 
  --geno 0.05 
  --make-bed 
  --out Cortellari2021_g05 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
53347 variants loaded from .bim file. 
1071 cattle (16 males, 51 females, 1004 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05.nosex . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1068 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.977196. 
2226 variants removed due to missing genotype data (--geno). 
51121 variants and 1071 cattle pass filters and QC. 
Note: No phenotypes present. 
--make-bed to Cortellari2021_g05.bed + Cortellari2021_g05.bim + 
Cortellari2021_g05.fam ... done. 

Sources: Author’s own elaboration.

FIGURE A8.4
Screenshot following pruning for individual missingness

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05.log. 
Options in effect: 
  --bfile Cortellari2021_g05 
  --cow 
  --make-bed 
  --mind 0.05 
  --out Cortellari2021_g05m05 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
51121 variants loaded from .bim file. 
1071 cattle (16 males, 51 females, 1004 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05.nosex . 
23 cattle removed due to missing genotype data (--mind). 
IDs written to Cortellari2021_g05m05.irem . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1045 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate in remaining samples is 0.997105. 
51121 variants and 1048 cattle pass filters and QC. 
Note: No phenotypes present. 
--make-bed to Cortellari2021_g05m05.bed + Cortellari2021_g05m05.bim + 
Cortellari2021_g05m05.fam ... done. 

Sources: Author’s own elaboration.
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The missingness statistics are then checked:

$ plink --cow --bfile Cortellari2021_g05m05 --missing --out 

Cortellari2021_g05m05

FIGURE A8.5
Screenshot when checking missingness statistics

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05 
  --cow 
  --missing 
  --out Cortellari2021_g05m05 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
51121 variants loaded from .bim file. 
1048 cattle (16 males, 50 females, 982 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05.nosex . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1045 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.997105. 
--missing: Sample missing data report written to Cortellari2021_g05m05.imiss, 
and variant-based missing data report written to Cortellari2021_g05m05.lmiss. 

Sources: Author’s own elaboration.

Missingness ratios are now negligible; a call rate of ~0.998 was obtained at the cost of 
only 2 228 loci (from 53 347 to 51 119) and 23 individuals (1 071 to 1 048), comparing 
Figure A8.4 and Figure A8.5.

Results are then visualized in R:
> imiss.pruned <- fread(“Cortellari2021_g05m05.imiss”, select = 6)

> lmiss.pruned <- fread(“Cortellari2021_g05m05.lmiss”, select = 5)

> par(mfrow=c(1, 2))

> hist(imiss.pruned$F_MISS, xlab = “missingness freq”, main = 

“individual missingness (after pruning)”)

> hist(lmiss.pruned$F_MISS, xlab = “missingness freq”, main = 

“loci missingness (after pruning)”)

> par(mfrow = c(1, 1))
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Minor allele frequency
The allele frequency spectrum is then compared using the --freq flag in PLINK.

$ plink --cow --bfile Cortellari2021_g05m05 --freq --out 

Cortellari2021_g05m05

FIGURE A8.6
Graphical representations of missingness statistics for individuals and loci

individual missingness (after pruning)

missingness freq

Fr
eq

u
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
20

0
40

0
60

0
80

0

loci missingness (after pruning)

missingness freq

Fr
eq

u
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
10

 0
00

20
 0

00
30

 0
00

40
 0

00

Sources: Author’s own elaboration.



153Appendix 8: Bioinformatics pipeline for quality control of genomic data

Results are then plotted with R (Figure A8.8).
> maf <- fread(“Cortellari2021_g05m05.frq”)

> hist(maf$MAF, xlab = “MAF”, main = “Allele Frequency Spectrum”)

FIGURE A8.7
Screenshot when assessing allelic frequencies

 

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05 
  --cow 
  --freq 
  --out Cortellari2021_g05m05 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
51121 variants loaded from .bim file. 
1048 cattle (16 males, 50 females, 982 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05.nosex . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1045 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.997105. 
--freq: Allele frequencies (founders only) written to Cortellari2021_g05m05.frq. 

Sources: Author’s own elaboration.

FIGURE A8.8
Distribution of minor allele frequencies (MAF)
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Low frequency variants appear heavily under-represented due to ascertainment bias.  
We set the MAF threshold at 0.02 following the rule of thumb 10/N where N = number 
of individuals.

> round(10/nrow(fread(“Cortellari2021_g05m05.fam”)), 2)

0.01 (Output)

MAF pruning can be performed with the --maf flag in PLINK.

$ plink --cow --bfile Cortellari2021_g05m05 --maf 0.01 --make-bed 

--out Cortellari2021_g05m05f01

FIGURE A8.9
Screenshot when pruning based on allelic frequencies

 

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05f01.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05 
  --cow 
  --maf 0.01 
  --make-bed 
  --out Cortellari2021_g05m05f01 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
51121 variants loaded from .bim file. 
1048 cattle (16 males, 50 females, 982 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05f01.nosex . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1045 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.997105. 
151 variants removed due to minor allele threshold(s) 
(--maf/--max-maf/--mac/--max-mac). 
50970 variants and 1048 cattle pass filters and QC. 
Note: No phenotypes present. 
--make-bed to Cortellari2021_g05m05f01.bed + Cortellari2021_g05m05f01.bim + 
Cortellari2021_g05m05f01.fam ... done. 

Sources: Author’s own elaboration.

Linkage disequilibrium reduction
A dataset with reduced linkage disequilibrium (LD) can be used to feed all those analyses 
requiring approximate linkage equilibrium. The LD is scanned in sliding windows of 50 
SNPs, sliding forward 5 SNPs at each step. The LD for each window is reduced to r2 = 0.2.

$ plink –cow –bfile Cortellari2021_g05m05f01 –indep-pairwise 50 5 

0.2 –out Cortellari2021_g05m05f01
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The SNPs to retain are listed in the output file with extension .prune.in. This latter 
file can be used in combination with the PLINK flag –extract to subsets the input file 
accordingly.

FIGURE A10
Screenshot when pruning based on linkage disequilibrium among loci

 

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05f01.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05f01 
  --cow 
  --indep-pairwise 50 5 0.2 
  --out Cortellari2021_g05m05f01 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
50970 variants loaded from .bim file. 
1048 cattle (16 males, 50 females, 982 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05f01.nosex . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1045 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.997108. 
50970 variants and 1048 cattle pass filters and QC. 
Note: No phenotypes present. 
--indep-pairwise: Ignoring 597 chromosome 0 variants. 
Pruned 367 variants from chromosome 1, leaving 2816. 
Pruned 266 variants from chromosome 2, leaving 2473. 
Pruned 250 variants from chromosome 3, leaving 2051. 
Pruned 281 variants from chromosome 4, leaving 2095. 
Pruned 217 variants from chromosome 5, leaving 1983. 
Pruned 280 variants from chromosome 6, leaving 2078. 
Pruned 253 variants from chromosome 7, leaving 1885. 
Pruned 243 variants from chromosome 8, leaving 2027. 
Pruned 127 variants from chromosome 9, leaving 1711. 
Pruned 212 variants from chromosome 10, leaving 1825. 
Pruned 248 variants from chromosome 11, leaving 1849. 
Pruned 235 variants from chromosome 12, leaving 1475. 
Pruned 155 variants from chromosome 13, leaving 1456. 
Pruned 230 variants from chromosome 14, leaving 1652. 
Pruned 156 variants from chromosome 15, leaving 1447. 
Pruned 158 variants from chromosome 16, leaving 1403. 
Pruned 114 variants from chromosome 17, leaving 1286. 
Pruned 156 variants from chromosome 18, leaving 1119. 
Pruned 93 variants from chromosome 19, leaving 1096. 
Pruned 118 variants from chromosome 20, leaving 1337. 
Pruned 145 variants from chromosome 21, leaving 1259. 
Pruned 126 variants from chromosome 22, leaving 1017. 
Pruned 94 variants from chromosome 23, leaving 898. 
Pruned 135 variants from chromosome 24, leaving 1158. 
Pruned 71 variants from chromosome 25, leaving 784. 
Pruned 88 variants from chromosome 26, leaving 931. 
Pruned 89 variants from chromosome 27, leaving 812. 
Pruned 68 variants from chromosome 28, leaving 841. 
Pruned 76 variants from chromosome 29, leaving 881. 
Pruned 376 variants from chromosome 30, leaving 1301. 
Pruning complete.  5427 of 50373 variants removed. 
Marker lists written to Cortellari2021_g05m05f01.prune.in and 
Cortellari2021_g05m05f01.prune.out . 

Sources: Author’s own elaboration.
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Extreme heterozygosity
Genotypic counts can be obtained by using the PLINK --het flag. This analysis is influ-
enced by LD, hence, the --extract flag is applied in conjunction with the .prune.in 
file to limit the SNP list to loci in approximate linkage equilibrium.

$ plink --cow --bfile Cortellari2021_g05m05f01 --extract 

Cortellari2021_g05m05f01.prune.in --het --out Cortellari2021_

g05m05f01ld02

FIGURE A8.11
Screenshot when obtaining genotypic counts

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05f01ld02.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05f01 
  --cow 
  --extract Cortellari2021_g05m05f01.prune.in 
  --het 
  --out Cortellari2021_g05m05f01ld02 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
50970 variants loaded from .bim file. 
1048 cattle (16 males, 50 females, 982 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05f01ld02.nosex . 
--extract: 44946 variants remaining. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1045 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.997124. 
44946 variants and 1048 cattle pass filters and QC. 
Note: No phenotypes present. 
--het: 43645 variants scanned, report written to 
Cortellari2021_g05m05f01ld02.het .. 

Sources: Author’s own elaboration.

The output with extension .het contains the observed Homozygotes counts for each indi-
vidual. These data are then used to compute in R the observed heterozygosity.

> het <- fread(“Cortellari2021_g05m05f01ld02.het”)

> het$O_HET = (het$`N(NM)` - het$`O(HOM)`)/het$`N(NM)`

The heterozygosity distribution per population can then be plotted (Figure A8.12).
> boxplot(O_HET~FID, data = het, las = 2)
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R can then be used to identify those individuals having within-population extreme (> 3 SD) 
heterozygosity.
> ExtHet <- NULL

> for(p in unique(het$FID)){

> subS = het[het$FID == p, ]

> ExtHet = rbind(ExtHet, subS[as.vector(abs(scale(subS$O_HET)) > 

3), c(“FID”, “IID”)])

> }

> table(ExtHet$FID)

Output:
ALP ARG ASP CAP DDS FAC GAR GCI GIR MES NIC SAA

4 1 1 1 1 1 1 1 1 1 1 1

The output above shows that the process identified 15 Individuals (i.e. 4 from the ALP 
breed and 1 from each of the others) showing within population extreme Heterozygosity. 
The list is then saved in a tab delimited file.

> fwrite(ExtHet, “IIDtoremove.txt”, sep = “\t”)

FIGURE A8.12
Distribution of heterozygosity according to population (breed)
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The data can then be filtered to remove individuals with extreme observed heterozygosity 
(Ho) while keeping SNP in approximate linkage equilibrium by combining the PLINK flags 
--remove (to exclude individuals) and --extract (to retains SNPs).

$ plink --cow --bfile Cortellari2021_g05m05f01 --extract Cortel-

lari2021_g05m05f01.prune.in --remove IIDtoremove.txt --make-bed 

--out Cortellari2021_g05m05f01ld02h3

FIGURE A8.13
Screenshot when filtering animals with extreme heterozygosity

PLINK v1.90b6.24 64-bit (6 Jun 2021)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05f01ld02h3.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05f01 
  --cow 
  --extract Cortellari2021_g05m05f01.prune.in 
  --make-bed 
  --out Cortellari2021_g05m05f01ld02h3 
  --remove IIDtoremove.txt 
 
7993 MB RAM detected; reserving 3996 MB for main workspace. 
50970 variants loaded from .bim file. 
1048 cattle (16 males, 50 females, 982 ambiguous) loaded from .fam. 
Ambiguous sex IDs written to Cortellari2021_g05m05f01ld02h3.nosex . 
--extract: 44946 variants remaining. 
--remove: 1033 cattle remaining. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 1030 founders and 3 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate in remaining samples is 0.997109. 
44946 variants and 1033 cattle pass filters and QC. 
Note: No phenotypes present. 
--make-bed to Cortellari2021_g05m05f01ld02h3.bed + 

Sources: Author’s own elaboration.

Relatedness
Plink v2.0 implements the KING robust kinship estimation (Manichaikul et al., 2010).  
We can generate a table of kinship to check pairwise kinship across the dataset using the 
--make-king-table flag:

$ plink2 --cow --bfile Cortellari2021_g05m05f01ld02h3 --make-king-

table --out Cortellari2021_g05m05f01ld02h3
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FIGURE A8.14
Screenshot when generating a kinship table 

 

PLINK v2.00a3 64-bit (1 Jul 2021)              www.cog-genomics.org/plink/2.0/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05f01ld02h3.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05f01ld02h3 
  --cow 
  --make-king-table 
  --out Cortellari2021_g05m05f01ld02h3 
 
Start time: Tue Jun 14 11:21:01 2022 
7993 MiB RAM detected; reserving 3996 MiB for main workspace. 
Using up to 8 compute threads. 
1033 samples (49 females, 15 males, 969 ambiguous; 1030 founders) loaded from 
Cortellari2021_g05m05f01ld02h3.fam. 
44946 variants loaded from Cortellari2021_g05m05f01ld02h3.bim. 
Note: No phenotype data present. 
Excluding 1301 variants on non-autosomes from KING-robust calculation. 
--make-king-table pass 1/1: Scanning for rare variants... done. 
6 variants handled by initial scan (43639 remaining). 
--make-king-table pass 1/1: Writing... done.              
--make-king-table: 43645 variants processed. 
Results written to Cortellari2021_g05m05f01ld02h3.kin0 . 
End time: Tue Jun 14 11:21:02 2022 

Sources: Author’s own elaboration.

The output is then loaded into R:
> kin <- fread(“Cortellari2021_g05m05f01ld02h3.kin0”)

A cutoff threshold of 0.354 is used to identify duplicate samples and monozygotic twins, 
with 0.354 being the geometric mean of kinship of 0.5 (for duplicates and monozygotic 
twins) and kinship of 0.25 (for parent-child, full siblings). The inferred kinship values can then 
be plotted (Figure A8.15) and thresholds set to identify relatedness proportions in the data:

> hist(kin$KINSHIP, xlim = c(0, 0.5))

> rel <- c(sqrt(0.5*0.25), sqrt(0.25*0.125), sqrt(0.125*0.0625))

> abline(v = rel, col = 2:4)

> text(rel+.02, 100000, round(rel, 3))

> legend(“topright”, legend = c(“Dup/MZ”, “PO/FS”, “2nd”), col = 

2:4, lty=1)
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The --king-cutoff flag is then used in PLINK v2.0 to exclude one member of each pair 
of samples with relatedness ≥ PO (0.177 in the following example).

$ plink2 --cow --bfile Cortellari2021_g05m05f01ld02h3 --king-cutoff 

0.177 --make-bed --out Cortellari2021_g05m05f01ld02h3rel

FIGURE A8.15
Distribution of kinship values
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For these data, 136 individuals were removed due to excessive relatedness, leaving 897 
individuals for further analysis (Figure A8.16).

Importantly, although it is often preferred to remove excess heterozygosity or relatedness 
from a working dataset, such features can be diagnostic of underlying population dynamics 
of interest. Hence, it is always advisable to perform these pruning steps keeping in mind 
the demographic history of the populations.
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2867–2873. https://doi.org/10.1093/bioinformatics/btq559

FIGURE A8.16
Screenshot when removing closely related (and possible duplicate) animals

 

PLINK v2.00a3 64-bit (1 Jul 2021)              www.cog-genomics.org/plink/2.0/ 
(C) 2005-2021 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to Cortellari2021_g05m05f01ld02h3rel.log. 
Options in effect: 
  --bfile Cortellari2021_g05m05f01ld02h3 
  --cow 
  --king-cutoff 0.177 
  --make-bed 
  --out Cortellari2021_g05m05f01ld02h3rel 
 
Start time: Tue Jun 14 11:22:08 2022 
7993 MiB RAM detected; reserving 3996 MiB for main workspace. 
Using up to 8 compute threads. 
1033 samples (49 females, 15 males, 969 ambiguous; 1030 founders) loaded from 
Cortellari2021_g05m05f01ld02h3.fam. 
44946 variants loaded from Cortellari2021_g05m05f01ld02h3.bim. 
Note: No phenotype data present. 
Excluding 1301 variants on non-autosomes from KING-robust calculation. 
--king-cutoff pass 1/1: Scanning for rare variants... done. 
6 variants handled by initial scan (43639 remaining). 
--king-cutoff pass 1/1: Condensing... done.           
--king-cutoff: 43645 variants processed. 
--king-cutoff: Excluded sample IDs written to 
Cortellari2021_g05m05f01ld02h3rel.king.cutoff.out.id , and 897 remaining sample 
IDs written to Cortellari2021_g05m05f01ld02h3rel.king.cutoff.in.id . 
Writing Cortellari2021_g05m05f01ld02h3rel.fam ... done. 
Writing Cortellari2021_g05m05f01ld02h3rel.bim ... done. 
Writing Cortellari2021_g05m05f01ld02h3rel.bed ... done. 
End time: Tue Jun 14 11:22:08 2022 

Sources: Author’s own elaboration.

https://doi.org/10.1038/s41598-021-89900-2
https://doi.org/10.1093/bioinformatics/btq559




163

Appendix 9

Steps to be taken in a typical 
genomic characterization study

Johannes A Lenstra, Utrecht University, the Netherlands

ALL DATASETS
•	 Genotyping
•	 Formatting of dataset (PLINK)3

•	 Quality control (PLINK, KING, and R; see Appendix 8)
•	 Optional: merging with literature data (PLINK)
•	 Calculation and display of interindividual distances for detection of duplicates and 

outliers (mislabelling, crossbreeding) and for checking breed-level differentiation 
(PLINK)

•	 Calculation of summary statistics per breed: nucleotide diversity (genomes), expect-
ed and observed heterozygosity, heterozygote deficiency (PLINK)

MOST DATASETS
•	 Inferring of relationships of breeds and genetic clines

–– PCA (Eigensoft, PLINK and specialized R functions)
–– model-based clustering (Admixture, Frappe, Structure)
–– NeighborNet graphs (SplitsTree)

DEPENDING ON THE DATASET AND OBJECTIVES OF THE STUDY
•	 Phasing and detection of haplotype-based clusters by fine-structure (AphaPhase, 

EAGLE, fastPhase)
•	 ROH content (KING, PLINK)
•	 Inferring of gene flows by the f3, f4 and of the D statistics (ADMIXTUREGRAPH, 

MIXMAPPER, TreeMix,)
•	 Examine the genetic basis of traits

–– GWAS – when individual phenotypes are available (BayesR, CGTA, EMMAX, 
PLINK,)

–– Selection signatures for population-wide characteristics
•	 Within breeds (cgaTOH, rehh, Selscan, SweeD, Sweep)
•	 Across breeds (HierFstat, PLINK, rehh)

•	 Coalescence analysis (MSMC and PSMC R packages)
•	 Reconstructing the history of a population (ABCtoolbox, Fastsimcoal2, SliM)3

4	 Common software options are indicated in parenthesis.





FAO ANIMAL PRODUCTION AND HEALTH GUIDELINES

1.	 Collection of entomological baseline data for tsetse
	 area-wide integrated pest management programmes, 2009 (En)

2.	� Preparation of national strategies and action plans for animal genetic resources, 2009  
(En, Fr, Es, Ru, Zh)

3.	 Breeding strategies for sustainable management of animal genetic resources, 2010

	 (En, Fr, Es, Ru, Ar, Zh)

4.	 A value chain approach to animal diseases risk management – Technical foundations

	 and practical framework for field application, 2011 (En, Zh, Fr**)

5.	 Guidelines for the preparation of livestock sector reviews, 2011 (En)

6.	 Developing the institutional framework for the management of animal genetic

	 resources, 2011 (En, Fr, Es, Ru)

7.	 Surveying and monitoring of animal genetic resources, 2011 (En, Fr, Es)

8.	 Guide to good dairy farming practice, 2011 (En, Fr, Es, Ru, Ar, Zh, Pte, Az)

9.	 Molecular genetic characterization of animal genetic resources, 2011 (En, Zh**)

10.	� Designing and implementing livestock value chain studies – A practical aid for Highly 
Pathogenic and Emerging Disease (HPED) control, 2012 (En)

11.	 Phenotypic characterization of animal genetic resources, 2012 (En, Fre, Zhe)

12.	 Cryoconservation of animal genetic resources, 2012 (En)

13.	� Handbook on regulatory frameworks for the control and eradication of HPAI and other 
transboundary animal diseases – A guide to reviewing and developing the necessary policy, 
institutional and legal frameworks, 2013 (En)

14.	 In vivo conservation of animal genetic resources, 2013 (En, Zh**)

15.	� The feed analysis laboratory: establishment and quality control – Setting up a feed 
analysis laboratory, and implementing a quality assurance system compliant with ISO/IEC 
17025:2005, 2013 (En)

16.	 Decision tools for family poultry development, 2014 (En)

17.	 Biosecurity guide for live poultry markets, 2015 (En, Fre, Zhe, Vi)

18.	 Economic analysis of animal diseases, 2016 (En, Zh)

19.	 Development of integrated multipurpose animal recording systems, 2016 (En, Zh)

20.	 Farmer field schools for small-scale livestock producers – A guide for decision-makers

	 on improving livelihoods, 2018 (En, Fre)

21.	 Developing sustainable value chains for small-scale livestock producers, 2019 (En, Zh**)

22.	� Estimation des bilans fourragers dans la région du Sahel d’Afrique de l’Ouest et Centrale, 
2020 (Fr)

23.	�� Carcass management guidelines – Effective disposal of animal carcasses and contaminated 
materials on small to medium-sized farms, 2020 (En, Fr, Es, Ru, Zh, Ar, Sq, Sr, Mk)

24.	 Technical guidelines on rapid risk assessment for animal health threats, 2021 (En, Fr)

25.	 Good beekeeping practices for sustainable apiculture, 2021 (En)

26.	 Responsible use of antimicrobials in beekeeping, 2021 (En, Es)

27.	� Developing field epidemiology training for veterinarians – Technical guidelines and core 
competencies, 2021 (En)

28.	� Making way: developing national legal and policy frameworks for pastoral mobility, 2022 (En)

29.	� Rift Valley fever action framework, 2022 (En)

29.	� Rift Valley fever action framework, 2022 (En)

30.	� Developing an emergency vaccination plan for foot-and-mouth disease in free countries, 
2022 (En)

31.	� Guidelines for livestock vaccination campaigns, 2022 (En)

Availability: January 2023



Ar	 –	 Arabic 
Az	 –	 Azerbaijani
En	 –	 English
Es	 –	 Spanish
Fr	 –	 French
Mk	–	 Macedonian
Pt	 –	 Portuguese
Ru	 –	 Russian
Sq	 –	 Albanian
Sr	 –	 Serbian
Vi	 –	 Vietnamese
Zh	 –	 Chinese

Multil – Multilingual

* Out of print

** In preparation
e E-publication

The FAO Animal Production and Health Guidelines are available through authorized FAO Sales 
Agents or directly from Sales and Marketing Group, FAO, Viale delle Terme di Caracalla, 00153 
Rome, Italy.





G
e
n

o
m

ic ch
a
ra

cte
riza

tio
n

 o
f a

n
im

a
l g

e
n

e
tic re

so
u

rce
s

FA
O

3
2

Genomic characterization
of animal genetic resources
Practical guide

IS
SN

 1
81

0-
07

08

FAO ANIMAL PRODUCTION AND HEALTH / GUIDELINES 32

Whole genome sequencing and related tools now offer opportunities to 
evaluate the genetic diversity of livestock populations and individuals with 
a much higher precision than ever before, at a fraction of previous costs. 
Applying genomics is technically demanding, however. This publication 
constitutes a practical tool to guide scientists and other stakeholders in their 
activities of genomic characterization of animal genetic resources.

This document is part of a series of guidelines published by FAO to support 
implementation of the Global Plan of Action for Animal Genetic Resources, 
which was adopted in 2007 and remains the internationally agreed framework 
for the management of biodiversity in the livestock sector. 

These guidelines on Genomic characterization of animal genetic resources 
update the previous edition of guidelines on Molecular genetic characterization 
of animal genetic resources, published in 2011. The guidelines describe the 
key processes of undertaking a study to characterize one or more livestock 
populations on the basis of their DNA sequences. The publication opens by 
reviewing the rationale for characterization of animal genetic resources 
and summarizing the history and prospects. The basics of carrying out a 
genomic diversity study are then addressed, followed by explanations of the 
main approaches for assessing genomes (i.e. whole genome sequencing and 
genotyping of single nucleotide polymorphism markers). Finally, the most 
important applications of genomics for assessing the genetic variation within 
and across populations are described. These guidelines are intended to provide 
countries with another tool for sustainable management and conservation of 
their animal genetic resources.
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