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Preface

This study aims to help bring the domestic food transport network into focus for The State of 
Food and Agriculture 2021 – Making agrifood systems more resilient to shocks and stresses. 
Transport infrastructure and logistics, not least domestic food transport networks, are an 
integral part of agrifood systems, and play a fundamental role in ensuring physical access to 
food at the local level, as well as in producing non-food agricultural output. The flow of food 
from farm to fork is vulnerable to various shocks; however, the resilience of this flow has 
rarely been studied. This study aims to fill that gap; in doing so, it develops a spatial analysis 
framework that realistically characterizes the physical transport network, and uses this 
framework to then analyse the network’s ability to transport enough food to meet demand. 

The analysis builds on a preliminary spatial workflow and on evaluated resilience 
metrics to analyse the structure of transport networks in the context of national food 
transport network resilience. For a total of 90 countries, it considers road, river and rail 
transport infrastructure, along with trade ports, border crossings and their respective 
import and export quantities. It then measures food transport network resilience for each 
country through three main indicators: proximity-based resilience, relative detour cost and 
alternative route availability. 

Findings show that where food is transported more locally and where the network is 
denser, disturbances have a much lower impact. This is mostly the case for high-income 
countries, as well as for densely populated countries like China, India, Nigeria and Pakistan. 
Conversely, low-income countries have much lower levels of transport network resilience, 
although some exceptions exist.

A simulation of the impact of localized 1-in-10-year flooding events in Mozambique, 
Nigeria and Pakistan is also used to capture the effect of potential disruptions to food 
transport networks for crops in the three countries. The simulation illustrates the loss 
of network connectivity that results when links become impassable, potentially affecting 
millions of people.
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Executive summary

Transport infrastructure and logistics – and domestic food transport networks in particular 
– are an integral part of agrifood systems, and play a fundamental role not only in ensuring 
physical access to food but also in producing non-food agricultural output. The flow of food 
from farm to fork is vulnerable to various shocks; however, the resilience of this flow has 
rarely been studied. In this study, we develop a spatial analysis framework that realistically 
characterizes the physical transport network, and use this framework to analyse the network’s 
ability to transport enough food to meet demand. This approach supports easy visualization 
of the network and movement through it, and permits aggregation of network characteristics 
to subnational and national levels for tabulation and intercountry comparison.

This analysis builds on a preliminary spatial workflow and on evaluated resilience 
metrics to analyse transport network structure in the context of national food transport 
network resilience. For a total of 90 countries, it considers road, river and rail transport 
infrastructure, along with trade ports, border crossings, and import and export quantities. 

It then measures food transport network resilience for each country through three main 
indicators: proximity-based resilience, relative detour cost and alternative route availability. 
Proximity-based resilience captures the way food is distributed between production and 
supply area. When average travel distance is higher than the optimum, systems are not very 
resilient. Relative detour cost evaluates the extra tonnage-minutes generated when a critical 
transport link is closed. Finally, alternative route availability measures the availability of 
alternative transport links when a given critical link is closed.

Findings show that where food is transported more locally and where the network is 
denser, disturbances have a much lower impact. This is mostly the case for high-income 
countries, as well as for densely populated countries like China, India, Nigeria and Pakistan. 
Conversely, low-income countries have much lower levels of transport network resilience, 
although some exceptions exist.

A simulation of the impact of localized 1-in-10-year flooding events in Mozambique, 
Nigeria and Pakistan is also used to capture the effect of potential disruptions to food 
transport networks for crops in the three countries. The simulation reveals the loss of 
network connectivity when links become impassable (see Section 5.3), either because the 
link is damaged (for example, when a bridge is washed away) or because access to that 
link is reduced (for example, when an access road to a main road or bridge is damaged or 
submerged). Such events have a major impact on the local population served by the affected 
transport of goods. In addition, they can also have an impact at the national level, as they 
compromise the ability of the transport network to efficiently transport goods throughout 
the country.

Overall, this work has provided a first geospatial framework to represent and model 
national food transport network resilience at a global scale. It has developed a unique and 
internally consistent database and plausible representations of complex transport networks, 
and has generated network and resilience metrics to characterize the network and its ability 
to transport food to meet demand. This work has established a new toolkit for measuring 
resilience, which promises further use and applications beyond this study. At the same 
time however, its conceptualization and development involved many decisions that deserve 
critical reflection, for which more work is needed.





1

1 Introduction 

The domestic food transport network is an integral part of agrifood systems. The flow of 
food from producer to consumer is vulnerable to shocks at many stages of its journey, 
but the resilience of this flow to shocks has rarely been studied, especially in comparison to 
the number of studies that have looked at production shocks (Davis, Downs and Gephart, 
2021). Our aim is two-fold: Firstly, to develop a spatial analysis framework that realistically 
characterizes the physical transport network. Secondly, to use this framework to analyse 
the network’s ability to transport sufficient food to meet demand, and its resilience to do so 
under shocks. 

This analysis builds on a preliminary spatial workflow and on evaluated resilience 
metrics to analyse transport network structure in the context of national food transport 
network resilience. It considers road, river and rail transport infrastructure, along with 
trade ports, border crossings, and import and export quantities for a total of 90 countries. 
Figure 1 indicates the countries included in the analysis.

Our approach supports easy visualization of the network and of movement through it, 
and permits aggregation of network characteristics to subnational and national levels for 
tabulation and intercountry comparison. These data can be useful for future multinational 
or global studies.

FIGURE 1 Representation of the 90 countries by income group
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Not studiedUpper-middle-income
countries

High-income
countries

Lower-middle-income
countries

Low-income
countries

Notes: Dotted line represents approximately the Line of Control in Jammu and Kashmir agreed 
upon by India and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon 
by the parties. Final boundary between the Sudan and South Sudan has not yet been determined. 
Final status of the Abyei area is not yet determined. A dispute exists between the Governments of 
Argentina and the United Kingdom of Great Britain and Northern Ireland concerning sovereignty 
over the Falkland Islands (Malvinas).

Source: World Bank (2019) modified by the authors.
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1.1 Inland transport network

Figure 2 is a simple diagram of the elements of the transport network within a country. 
Cities (red) are nodes on the network graph. While they are conceptually represented as points 
on the network, cities have spatial footprints that are more accurately represented as polygons. 

FIGURE 2 Elements of the inland transport network
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Notes: Cities (red), roads (green) and their distances, and catchments around each city (yellow). 

Source: Authors’ own elaboration based on Banks (2002). 

Cities are connected to one another by transport infrastructure segments (as indicated 
by the green lines in Figure 2). These include roads, railroads, or rivers that support the 
transport of food commodities via truck, train, barge or ship. The analysis does not consider 
air transport infrastructure, and sea transport is considered for international transport only. 
Each transport infrastructure segment is defined by type (road, rail or river) and class (major 
road, secondary road, etc.), and has a defined speed of travel which varies by type, class and 
country. Two cities may therefore be connected by multiple segments, each of a different type.

Cities act as centres of attraction for services and employment for a surrounding catchment 
area; these are delineated by the yellow lines in Figure 2. The analysis considers all cities of 
50 000 people or more, and associates each one with a single catchment; each catchment 
consists of a population that consumes food and a land area that is used to produce crops or 
food. When computing the demand for food, we therefore account for the total population 
of the catchment as a whole (and not just the population of the city within that catchment).

Trade, through import and export, takes place at sea and land border crossings as 
explained in the next section. These trade stations are properly embedded in the transport 
network as nodes, to play their role in the transport of food.

On this basis, we define the spatial and tabular data requirements to represent each 
of these elements, and the means to represent disruptions to movement and production. 
Six key requirements for the analysis were that all data must: (i) be open-source to permit 
redistribution and reuse; (ii) have global coverage to allow for analysis of any country and 
for comparisons across counties; (iii) represent the state of the art (in terms of recentness 
and quality of data); (iv) be spatially detailed enough to permit plausible subnational 
representations; (v) preferably be updated on a regular basis; and (vi) include certain layers that 
allow for adjustments in their spatial or attribute information so as to represent disruptions. 
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1    Introduction

1.2 International transport network

Figure 3 is a diagram of the elements of the transport network between countries. 
Trade stations (red circles) are nodes on the network graph, and act as gateways to trade 
stations in other countries. To model long-haul transport through intermediate countries, 
land-based trade stations (i.e. border crossings) are also connected to other trade stations 
in the same country (via the grey and black lines). The network currently includes road, 
rail and sea transport at the global level.

FIGURE 3 Elements of the international transport network

A B

C
D

Notes: Red circles represent trade stations that are connected to other trade stations by road 
(grey lines), rail (dashed lines) or sea (blue lines).

Source: Authors’ own elaboration.

1.3 Production, import, export and food available for consumption

We follow the assumptions and definitions used in the Food Balances of the Food and 
Agricultural Organization of the United Nations (FAO) (FAO, 2017). We consider the top ten 
supplied commodities per country based on national supply quantities, excluding beverages, 
livestock, poultry, dairy, fish and seafood. Globally, this subset accounts for 66 percent of all 
food supply, 60 percent of calories, and 58 percent of protein.

Each food crop considered is grown in specific locations, such that its production (in tonnes) 
is spatially allocated to production zones in each country. Food available for consumption is 
spatially allocated based on the spatial distribution of population. We assume food available 
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for consumption per capita is constant within a country, although different food commodities 
have different per capita consumption. Import and export quantities are allocated to import 
and export locations based on the most likely mode of transport: ports for trade via sea or 
river routes, and land border crossings for trade via road or rail. We do not account for any 
informal international trade. 

The quantity of food available domestically (domestic food supply) is equal to the amount 
of production and stocks (either positive or negative) plus imports, minus exports. As per 
FAOSTAT, the quantity of food available for consumption (domestic food demand) equals the 
domestic food supply minus any food that is used for feed, seed, or manufacturing processes 
that produce a derived food product, any food used for any other non-food products, and any 
food lost between production and supply (FAO, 2020).

1.4 Movement of food through the transport network

We make the following assumptions regarding the movement of food through the transport 
network:

 ¡ Each catchment produces a certain amount of food, and that production is associated 
with the city (node) at the centre of that catchment. Centrality is based on travel time. 

 ¡ We do not model the initial transport from the farm to the nearest city, nor from the city to 
consumers within the same catchment. We ignore that food flows, in part, to processing 
factories and storehouses, instead of directly to consumers. We are assuming that 
processing plants are evenly distributed over cities. Since we concentrate food production 
of a catchment in the city, a substantial amount of food processing may already occur in 
that city (as it is the closest) before it is transported into the network.

 ¡ Each catchment has a certain population. Some – or all – of the locally produced food 
may be consumed by the population of the catchment. 

 ¡ Food that is produced in a catchment but which is excess to the consumption needs of 
that catchment is distributed via the transport networks to all other cities. Cities that are 
closer receive a higher share if they have demand for that food.

 ¡ International trade (import/export) is modelled separately by a dedicated international 
transport network and trade distribution model. The results are transferred to the inland 
model using trade stations. While the model also quantifies trade volumes that transit 
through third countries, these numbers are not used in our analysis.

 ¡ Trade stations are additional nodes in the network that are not associated with a city or 
catchment, and their import or export values are added/subtracted to the total country 
production.

 ¡ We do not impose any constraints on the quantity of food that can be transported along 
a transport network segment in a given amount of time.

 ¡ We assume that globally, road infrastructure is relevant to transport only on roads of 
tertiary class or higher. In high-income countries we ignore the tertiary road class. 
In three low-income countries, we include unclassified roads and tracks, for cases where 
they are the only infrastructure connecting a city to the national network. In a few other 
countries, we include such roads at the local level only, to connect otherwise disconnected 
cities to the network.

 ¡ We assume that travel is possible bidirectionally, and direction does not influence cost.
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2 Methods

K E Y  M E S S A G E S

Using data from OpenStreetMap (OSM), we developed a complete data set for 
road infrastructure at country level, complemented with data on navigable rivers 
and associated railroad stations and ferry routes.

We spatially assigned food production using 2010 and 2017 Spatial Production 
Allocation Model (SPAM) data, and food supply using 2015 Global Human 
Settlement Layer (GHSL) data.

We calculated production, supply, imports and exports for each country, 
averaged over the years 2015–2017 using FAOSTAT data; where these data were 
missing, we used remedial tactics to address the data gaps.

2.1 Spatial base data

Global fundamental base data were collected to allow quantification and spatialization of 
characteristic functions of national food transport systems (Davis, Downs and Gephart, 
2021). As food transport uses the national transport infrastructure, we collected complete, 
national-level road data from OSM (OpenStreetMap, 2021), and complemented this with 
OSM data on railroads, ferry routes, associated railroad stations and ferry terminals. Data on 
navigable rivers were retrieved from HydroSHEDS (Lehner, 2013), and on ports from World 
Port Index (WPI) (National Geospatial-Intelligence Agency, 2017) and World Port Source 
(WPS) (World Port Source, 2021). All these data were embedded in a base layer that provides 
countries sourced from Global Administrative Areas (GADM) 3.6 (Global Administrative 
Areas, 2021). For the international transport network, administrative boundaries (level 0–2) 
and road data from OSM were collected and utilized at the global level to identify border 
crossings, whereas the Global Self-consistent, Hierarchical, High-resolution Geography 
Database (GSHHG) was used as input for sea route identification (Wessel and Walter, 2017). 
Ferry routes considered elementary for connecting some regions were treated as a special, 
slower road type. Due to data constraints, we did not include domestic sea freight/shipping 
routes, nor did we include air freight, whether domestic or international. (The latter is also 
considered a minor form of food transport.) 

We aimed to spatially assign places of food production using 2010 and 2017 SPAM data 
(Yu et al., 2020). Food supply was spatially assigned using 2015 data from GHSL (JRC, 2015). 
As larger cities typically act as local hubs for regional food trade, we sourced GHSL for cities 
with a population above 50 000. These cities then became the centres of regional food trade 
catchments, with travel time as a metric (Cattaneo, Nelson and McMenomy, 2021).

We characterized and spatially assigned sea trade ports and land border crossings as key 
food transport locations between countries. While we modelled international food transport 
for transit countries, we did not analyse the transit of food volumes through these countries 
for the resilience metrics.
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2.2 Food volume equations

In order to understand national food volume equations, we collected tabular data for all 
countries (Table 1) and for all crops (Table 2). We focused on the years 2015 to 2017. 
Crucial  for our work on food volumes is a pivot table that (dis)aggregates and translates 
between the crop codes and the names of the different sources we used: MapSPAM, FAOSTAT 
Crops and Livestock Products (QCL), FAOSTAT Food Balances and FAOSTAT Detailed Trade 
Matrix (FAO, 2020). Most of our data derive from FAOSTAT, and where data were missing, 
we used remedial tactics to address the gaps.

TABLE 1 Spatial data layers, sources and data filters used

Layer Source URL Filter

Countries GADM gadm.org Level 0

Cities GHSL ghsl.jrc.ec.europa.eu > 50k population

Roads OSM

openstreetmap.org

On road classes; network 
simplification workflow

Railroads and stations OSM

Ferry routes 
and terminals OSM

Administrative 
boundaries OSM Level 0–2

Trade ports WPI
msi.nga.mil/

Publications/WPI

WPS worldportsource.com Coincidence with WPI

Navigable rivers hydrosheds.org
River class and average 

annual discharge

Border crossings OSM and 
derived

Border crossing 
generation workflow

Coastal lines GSHHG
soest.hawaii.edu/

pwessel/gshhg

Sea routes Derived
Sea route generation 

workflow

Human population GHSL ghsl.jrc.ec.europa.eu

Crop production MapSPAM mapspam.info Food crops

Source: Authors’ own elaboration.



7

2    Methods

TABLE 2 Sources of food production, supply, imports and exports

Variable Source Missing Remedy

Production FAOSTAT’s Food 
Balances (85 countries)

5 countries Used FAOSTAT QCL

Imports FAOSTAT Detailed Trade 
Matrix (74 countries)

16 countries Used the mirrored reports 
of partner countries from 

which imported

Food 
available for 
consumption

FAOSTAT’s Food 
Balances (85 countries)

5 countries Used regional food supply 
averages (FAOSTAT) and 

UN World Population 
Prospects for national 

population figures

Exports FAOSTAT Detailed Trade 
Matrix (74 countries)

16 countries Used the mirrored reports 
of partner countries to 

which exported

Source: Authors’ own elaboration.

For Burundi, the Democratic Republic of the Congo, Somalia, South Sudan and the Syrian 
Arab Republic, there are no production and supply data available. Annual production figures 
per crop for these were gleaned from FAOSTAT QCL; annual food supply figures were imputed 
from regional averages,1 with annual population figures obtained from the United Nations 
Department of Economic and Social Affairs (UN DESA). Likewise, there are 16 countries for 
which we have no import and export data: Angola, Chad, the Democratic People’s Republic 
of Korea, the Dominican Republic, Guinea-Bissau, Haiti, Iraq, the Lao People’s Democratic 
Republic, Liberia, Mozambique, Myanmar, Somalia, South Sudan, Sudan, Uzbekistan 
and Viet Nam. For these, we used the reversed data as reported by their trade partners. 
While the imports reported by one country will not usually be identical to the exports of its 
partner country (and vice versa), we believe such adjustments should not in principle result 
in significant errors at the system level.

2.3 Selection of production crops and commodities available 
for consumption

Our selection of (groups of) food crops was constrained by the level of disaggregation in the 
spatial and tabular data on crop production/consumption and on the congruence between 
these data sources. Our starting point was the SPAM data set, which provides crop production 
estimates in tonnes at a five-minute resolution (approximately 10 km at the equator) for 
42 different crops or crop aggregates, of which 27 are food crops. SPAM data are available 
globally for the year 2010, and for sub-Saharan Africa for 2017. 

We compared the 27 food crops in SPAM to the crops listed in the FAOSTAT QCL and 
Detailed Trade Matrix, and to the crops and crop products in FAOSTAT’s Food Balances. 
The online documentation for MapSPAM (MapSPAM, 2019) provides a list of FAOSTAT item 
codes to relate MapSPAM to the crops and item codes in the FAOSTAT QCL and Detailed 
Trade Matrix. The resulting 21 crops are listed in Table 3. For each of the 90 countries, 
we considered only the top ten supplied crops / crop groups, based on quantity (tonnes). 

1 For Burundi and the Democratic Republic of the Congo, the regional average of Middle Africa was used; that of 
Northern Africa was used for Somalia and South Sudan; and that of Western Asia for the Syrian Arab Republic.
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2.4 Spatial assignation of production, supply, imports and exports

The 27 MapSPAM layers were aggregated into 21 layers; for each country, the production value 
(in tonnes) per pixel was adjusted so that the national sum matched the national production in 
FAOSTAT, as averaged over 2015–2017. Production was assigned to the catchment around 
each city. Catchments were defined based on a 30-arc-second cost-allocation model, which 
allocates each pixel to a city based on shortest travel time to the nearest city. The catchment 
population was used to compute the food available for consumption (in tonnes) per catchment, 
using national per capita food available for consumption (FAO, 2020). 

TABLE 3 Relation between MapSPAM, FAOSTAT and our 21 crops/crop groups

MapSPAM 
crop

Codes in QCL and Detailed 
Trade Matrix tables

Codes in 
Food Balances

Our 
code Our name

Wheat 15 2511 1 Wheat

Rice 27 2805 2 Rice

Maize 56 2514 3 Maize

Barley 44 2513 4 Barley

Pearl millet
79 2517 5 Millets

Small millet

Sorghum 83 2518 6 Sorghum

Other cereals
68, 71, 75, 89, 92, 94, 97, 

101, 103, 108
2515, 2516, 

2520
7 Other cereals

Potato 116 2531 8 Potatoes

Sweet potato 122 2533 9
Sweet 

potatoes

Yams 137 2535 10 Yams

Cassava 125 (128)* 2532 11 Cassava

Other roots 135, 136, 149 2534 12
Other roots 
and tubers

Bean 176 2546 13 Beans

Chickpea 191

2547, 2549 14 Other pulses

Cowpea 195

Pigeonpea 197

Lentil 201

Other pulses 181, 187, 203, 205, 210, 211

Soybean 236 2555 15 Soyabeans

Groundnut 242 (243)** 2556 16 Groundnuts

Coconut 249 2560 17 Coconuts

Banana 486 2615 18 Bananas
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2    Methods

TABLE 3 (cont.) Relation between MapSPAM, FAOSTAT and our 21 crops/
crop groups

MapSPAM 
crop

Codes in QCL and Detailed 
Trade Matrix tables

Codes in 
Food Balances

Our 
code Our name

Plantain 489 2616 19 Plantains

Tropical fruit
490, 495, 497, 507, 512, 567, 
568, 569, 571, 572, 574, 577, 

587, 591, 600, 603 2611, 2612, 
2613, 2614, 
2617, 2618, 
2620, 2625

20 Fruits

Temperate 
fruit

515, 521, 523, 526, 530, 531, 
534, 536, 541, 542, 544, 547, 
549, 550, 552, 554, 558, 560, 

592, 619

Vegetables

358, 366, 367, 372, 373, 388, 
393, 394, 397, 399, 401, 402, 
403, 406, 407, 414, 417, 420, 
423, 426, 430, 446, 449, 459, 

461, 463

2601, 2602, 
2605

21 Vegetables

Notes: * Dried cassava (code 128) is traded; fresh weight conversion is 0.33. ** Groundnut is code 242 in 
QCL and 243 (shelled) in the Detailed Trade Matrix. 

Source: Authors’ own elaboration.

Total national import and export trade volumes were sourced from FAOSTAT’s Food 
Balances and used as the leading numbers. We determined an annual average based on 
maximally three annual totals for the years 2015–2017. The split of imports/exports to 
partner countries was based on what the country itself reports in the FAOSTAT Detailed 
Trade Matrix, and not on what the partner country reported. An exception to this was made 
for 16 countries that do not report import/export volume by partner; here we used the 
mirrored export/import numbers from the partner countries. Among these, the Dominican 
Republic and Haiti, and Chad and Sudan are neighbour countries, which has likely led to 
some unknowns. The Detailed Trade Matrix numbers were used to assess the ratios by 
which to spatially assign trade volumes to partner countries.

Due to the data processing methods used, the FAOSTAT Detailed Trade Matrix includes 
entries with very small trade volumes between countries. In order to properly model food 
transport, the study requires the distribution of country-level trade volumes to multiple 
specific locations in each country (i.e. trade stations). However, further division of such small 
trade volumes was not acceptable; a filtering method was therefore applied to eliminate 
trade volumes that were insignificant for both importing and exporting countries (in other 
words, less than 0.1 percent of country-specific import and export volume). This resulted in 
a 40 percent reduction in data rows, while retaining 99.77 percent of the global trade. 

The four-step transport model requires that supply equals demand. In this case, 
this requires that production plus imports equals supply plus exports, wherein “supply” 
represents food available for consumption after losses and other uses have been removed. 
We account for this by scaling up the supply such that the equation balances out. This has no 
impact on the resilience metrics that we compute, but ensures that the four-step transport 
model (Section 5) will generate a result.
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3 Geospatial workflow and 
four-step transport model  

K E Y  M E S S A G E S

We developed five workflows to determine where food is produced and supplied, 
where it enters or exits a country, and where it travels to meet demand.

One workflow took a highly detailed, open-source road data set and simplified it 
to represent food transport at the national level.

Other workflows derived sea routes and estimated international trade volumes 
for these routes.

We then used a four-step transport model to predict the amount of travel in 
terms of quantity (tonnes), of food kilometres and of food hours travelled over 
a network.

3.1 Workflows overview

The geospatial workflows produce the geospatially explicit data sets required to model 
national food transport systems for a given country. The central question is, where? Where is 
food produced and supplied, where does it enter or exit the country, and where does it 
travel to meet demand? To answer these questions and prepare the data required for a 
spatially explicit transport model, we developed the following five workflows, each of which 
is described in the following sections:

 ¡ spatial production and food available for consumption per catchment workflow;

 ¡ border crossing identification workflow;

 ¡ sea trade route workflow;

 ¡ trade volume assignation to trade stations workflow; and

 ¡ transport network simplification workflow.

Spatial production and food available for consumption per catchment
As described in Section 2.4, we base the spatial production data set on MapSPAM. For each 
country and for each of its top ten crops available for consumption, we spatially intersect the 
respective MapSPAM crop raster with the country’s territory. We sum the crop production 
(in tonnes) for the country and determine a factor by which that production must be scaled 
to equal the FAOSTAT production annual average as reported for the crop. The crop-specific 
factor is then applied to the crop grid, which allows us to estimate crop production by grid 
cell aggregation per catchment.



The resilience of domestic transport networks in the context of food security  
– a multi-country analysis 

12

Spatially explicit figures for food available for consumption combine population data 
(i.e. on the spatial grid, as obtained from GHSL) with food demand data (i.e. annual kg per 
capita, as obtained from FAOSTAT’s Food Balances). Next, we determine national population 
as an aggregation over the GHSL grid and compute a factor to scale against FAOSTAT’s 
national population figure. This scale factor is applied to the grid at catchment level, in order 
to render catchment population in FAOSTAT’s terms. That number is simply multiplied by 
the per capita food available for consumption for any crop that we are interested in, to give 
us the quantity of crop available for consumption per catchment.

Border crossing identification
Trade between countries only takes place at designated points where trade stations are 
located, thus at ports and major land border crossings. Our food transport model includes 
import and export volumes and associates them with the national network at these designated 
locations. We used a global ports data set for the analysis, but because no global data set of 
road transport trade stations exists, we derived these from the OSM road network and OSM 
administrative boundaries. To identify the important border crossings, a global roads data 
set comprising the highest three classes (motorway, trunk and primary) was intersected with 
global level-zero administrative boundaries (which correspond with country boundaries).

This part of our analysis uses OSM boundaries (instead of GADM, which is used 
elsewhere) to reduce the risk of non-conformity between roads and borders. Nevertheless, 
many artificial (non-existing) border crossings were found due to misaligned roads along 
borders (see Figure 4). To address this problem, a simplification method was developed to 
automatically remove points belonging to roads that zigzag along borders, and to consolidate 
proximate points in an iterative way that considers road types, prioritizing higher-level roads 
over others (for example, motorways over trunks). The method was validated by comparing 
its results to manually identified crossing points in Africa, the United States of America 
and Viet Nam, and was found to identify actual crossing points in a satisfactory manner. 
The global border crossing data set for roads is shown in Figure 5.
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3    Geospatial workflow and four-step transport model

FIGURE 4 Example of border crossing simplification for the border between 
the Dominican Republic and Haiti 
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Haiti Dominican Republic

Notes: Actual crossing points (red) are separated from artificial (or zigzagging) points. 

Source: UN (2020) modified by the authors.

FIGURE 5 Global distribution of border crossings generated in the study
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Notes: For special country/region-specific disclaimers see notes of Figure 1.

Source: UN (2020) modified by the authors.
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Sea trade route
A significant portion of global food transport takes place by sea. Port facilities play an 
important role in the food trade and act as gateways to the national transport network for 
gathering and distribution purposes. Likewise, sea routes that connect port facilities are 
significant elements of the global transport network, and may also be quite vulnerable – 
as demonstrated by the blockage of the Suez Canal in 2021.

We consider more than 1 400 major (i.e. large and medium-sized) ports as part of the 
international food transport network. Although tabulated distances for sea routes between 
countries and selected major ports are available (National Geospatial-Intelligence Agency, 
2001; Bertoli, Goujon and Santoni, 2016), modelling international trade requires a public 
data set providing sea routes between all major ports, which does not exist. Long-haul sea 
routes are determined by long-term experience and practices, which are difficult to reproduce 
with the limited data available. Given the scope of the study however, it is sufficient to have 
a good approximation of the routes, so as to allow for the elimination of routes that are 
infeasible in the context of global food trade distribution. For this purpose, a grid-based 
minimum distance and routing method was developed. The method, which is based on 
Dijkstra’s (1959) shortest-path algorithm, specializes in sea routing and allows for proper 
circumnavigation of landmasses and islands along the route.

Although high-resolution vector coastline data sets are available, using vector data 
for pathfinding is complicated and computationally intensive. The common practice is to 
convert vector data into a regular raster for grid-based routing, which starts from an origin 
cell and reaches the destination cell by following a single neighbour (N) cell at a time. Several 
neighbourhood visiting patterns can be used for this purpose, the most common being N4 
and N8, which visit four and eight cardinal directions respectively. Although N8 visits all 
direct neighbours, due to restricted directionality the resulting routes are not smooth and 
natural. To allow a higher degree of freedom in potential moves, the custom sea routing 
method includes an implementation of N32, allowing 32 (instead of 8) cells to be considered 
at each move (see Figure 6).

Accurate pathfinding requires a grid with a small cell size, as this allows for the 
identification of narrow passages or obstacles which are not uncommon at sea (for example, 
channels and small islands). However, small cell sizes result in very large grid sizes at global 
scale; these in turn are either difficult to process or require very long computation times. 
To retain essential connectivity information, the custom sea routing method includes a 
special data preparation step, which starts with a high-resolution grid and creates grids of 
progressively lower resolution by resampling gradually, until the target resolution is reached. 
Distribution of sea and land cells are considered at each sampling step to ensure transfer of 
connectivity information from the higher to the lower resolution.

Figure 7 shows an example of a set of sea routes from a single port (Mariupol, Ukraine) 
to all other ports, using the N32 neighbour visiting pattern with a connectivity-aware sea 
raster grid.
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FIGURE 6 Comparison of sea routes obtained by N8 and N32 visiting 
patterns along the Aegean Sea, Dardanelles and Bosporus

Notes: The route in red was obtained using the N8 visiting pattern. The route in blue was obtained 
using the N32 visiting pattern. N32 moves are shown at bottom right.

Source: UN (2020) modified by the authors.

FIGURE 7 Sea routes from the port of Mariupol, Ukraine

Notes: For special country/region-specific disclaimers see notes of Figure 1.

Source: UN (2020) modified by the authors.
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Trade volume assignation to trade stations
Each national transport model considers the spatial distribution of production and food 
available for consumption of each relevant crop by using areal catchments. The movement 
of crop products between catchments is also properly taken into consideration by using a 
country-specific transport network. To complement this and to have a complete picture of 
food transport, international trade (import/export) should also be integrated with the model 
considering spatial aspects. Unfortunately, the FAOSTAT Detailed Trade Matrix – which is 
the fundamental data source on international trade – provides information only at (partner) 
country level. Hence, there is no information available on where products enter or exit a 
country, or on the trade volumes at those locations. Border crossing and sea route data sets, 
as explained in the previous section, aim to fill the gap for the former (“where?”), whereas 
the international trade distribution model developed in the study aims to provide missing 
information for the latter (“how much?”).

The international trade model is a sophisticated model that assigns crop-specific trade 
volumes to trade stations based on: total trade volumes between countries; available trade 
stations; direct as well as indirect connections between trade stations (the latter referring to 
transit freight through a transport chain); and transport costs, including factors such as type 
of transport, distance, number of intermittent stations and number of instances in which the 
transport mode needs to be changed (for example, from sea to road or road to sea). Our model 
automatically generates multi-segment transport routes between all trade stations, evaluates 
possible routes by comparing estimated transport cost through the use of representative 
metrics, and eliminates infeasible routes, thereby allowing for the logical distribution of 
trade volumes to the remaining routes according to the rules or preferences of the transport 
mode. Because international trade is complex and has many exceptions, the  model also 
allows for the customization and correction of automatically generated data sets to yield 
better results. Considering the need to keep track of the manual interventions required, 
and to guarantee the reproducibility of results, the model features a specialized manual data 
entry method based on revision tables. To support the manual data entry method, the model 
uses a dedicated database and a custom-developed modelling framework; it is also well 
integrated with the existing study database and can easily import up-to-date data.

To distribute the FAOSTAT Detailed Trade Matrix country-level data on trade through 
trade stations, the model first simplifies available crop-specific trade data between pairs of 
countries; it does this by removing any entries for a given crop that are less than 0.1 percent 
of the total import or export volumes between the related countries for that crop. For the 
existing data set, the simplification resulted in a 37.1 percent reduction in pair-wise trade 
data, while retaining 99.8 percent of the global trade volume, thereby allowing more 
targeted distribution of trade to major trade stations. Links between trade stations can then 
be identified. A link is a direct connection between two trade stations located in two different 
countries. For border crossings, a link is created automatically for each pair of stations 
located opposite each other in neighbouring countries. For ports, sea routes are generated 
as explained previously, and are utilized accordingly. As with the links connecting different 
countries, inner links connecting trade stations located in the same country are similarly 
generated. The model currently assumes that all trade stations in a country are connected to 
each other directly, independent of the national transportation network, and the distances 
between the stations are calculated as great-circle distances. For each link and inner link, 
a transport cost is calculated based on weighted link length and on the types of stations 
at each end. Link length weighting factors of 1.0 and 2.0 are utilized for sea and land 
links respectively, which results in the preference of sea routes over land routes whenever 
possible. For border crossing links, the distance is set to zero. A fixed cost of 1 000 km 
is assigned to links having stations with the same transport mode (such as sea or road), 
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whereas for differing stations this cost includes a penalty for the change of transport mode, 
which is set as 2 500 km.

Next, the model automatically creates routes between trade stations. A route is a 
continuous path of links and inner links between two trade stations located in two different, 
non-neighbouring countries. The routes are generated by connecting links and inner links in 
the appropriate order and then summing their costs. Alternative routes between two stations 
are automatically handled by keeping the shortest route only: first by route cost, then by 
number of stages. For this purpose, the route is first compared to the lowest-cost route 
identified between the countries (if any). If the difference in cost is more than 10 percent, 
then the route is eliminated. If not, the route is then compared with the lowest-cost route 
identified between the stations (if any), and again, if it is more costly it is eliminated. 
In short, an existing route is replaced with a new route only if the new route is less costly 
by a difference of more than 10 percent, or if it has at least two fewer intermediate stations 
(in other words, if it crosses fewer countries). The model allows selected links or inner 
links to be disabled in order to customize routing when necessary, for example to consider 
disruptions or sociopolitical conditions more accurately. Once all transport routes connecting 
global trade stations are identified, the routes of the same transport mode connecting pairs 
of countries are prioritized. 

The model allows a ratio to be assigned to each route so as to indicate the weight of 
the route as compared with routes of the same transport mode between related countries. 
For example, if a↔b is a road-to-road route between countries A and B, and if there are 
two other road-to-road routes between A and B, which are c↔d and e↔ f, then assigning a 
ratio of 0.5 to a↔b results in a ratio of 0.25 for c↔d and a ratio of 0.25 for e↔ f (whereas 
normally, each of the three would have a ratio of 0.33). Default route ratios are automatically 
calculated by using a ratio lookup table for station types and by considering all alternative 
routes between countries. Preference is given to major trade stations, such as major ports 
and border crossings located at major roads. The model then introduces directionality into 
the equation by converting routes into trade routes that consider the direction of trade – 
in other words, from exporting countries to importing countries (for example, a→b, if A→B). 
For each crop traded over a trade route, a trade route ratio is assigned, which is by default 
equal to the route ratio (for example, a→b: 0.5 for rice and a→b: 0.3 for wheat) (rs in the 
equation below). Next, transport mode ratios between pairs of export–import countries are 
calculated by using a lookup table that is specific to transport mode (for example, A→B by 
road: 0.7 and A→B by sea: 0.3), and then customized for each crop (for example, A→B rice 
by road: 0.3 and A→B rice by sea: 0.7) (rm in the equation below). Finally, crop-specific trade 
volumes between trade stations are calculated as follows:

ac = Ac ∙ rm ∙ rs

where: 

ac = amount of crop c exported from station Si in country C to station Sj in country D

Ac = amount of crop c exported from country C to country D

rm = trade ratio between countries C and D for crop c and transport mode of station Si

rs = trade ratio between stations Si and Sj for crop c

Consistency between country-specific (rm) and route-specific (rs) ratios is automatically 
handled and guaranteed by the model, which also automatically handles dependencies 
between different data tables.
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Transport network simplification
This workflow generates a connected graph that represents a country’s transport network 
reasonably and simply. The nodes in the graph reflect cities associated with a food 
consumption/production catchment, as well as principal trade stations through which 
international trade takes place. Additional nodes represent major road junctions. The edges 
of the graph are attributed with a transport mode class, which comprises various higher-
priority road classes, as well as rail, ferry and river transport modes. Another attribute is 
a cost factor, which expresses the travel time in minutes along the edge for the attributed 
transport mode. Edges are assumed to be bidirectional and transport cost is assumed to be 
independent of direction.

A connected graph lends itself well to transport modelling if and only if it is sufficiently 
downsized. As our source geospatial data is mostly taken from OSM, this results in some 
challenges. The prefiltered road data sets for China, India and the United States of America 
consist of 3.8, 0.5 and 2.8 million road segments respectively. The cities number 1 841, 3 247 
and 321, and trade stations number 89, 57 and 258 respectively. Graphs of such size cannot 
be practically analysed for the purposes of resilience metrics unless they are simplified. 
The OSM data lends itself to such simplification because of considerable redundancy in the 
context of its transport models. Single motorway lanes, feeder roads and link roads are all 
separate road segments, and complex junctions may consist of tens of edges. While OSM 
road segments are generally well-behaved in how they connect with each other, the points 
of connection appear to be the arbitrary result of the acquisition and maintenance history, 
and a single stretch of road may be represented by multiple segments in line. These can 
in principle be combined into one segment, if the contributing segments are of the same 
transport mode. In addition, urban (residential) roads make up a large proportion of the 
total, but are largely irrelevant for national transport studies. We exclude these roads from 
our data and replace them with an artificial within-city road network that restores road 
connectivity within the urban footprint.

The principle of our simplification workflow (SWF) is to collapse the coordinate space 
to a grid at a fixed distance (by “snapping” or repositioning road segments to a fixed grid). 
The distance we chose is 0.004 degrees in the native coordinate system (445 m at the equator), 
as early experimentation indicated it was the best compromise between sufficient collapse 
and acceptable coordinate precision loss. Figure 8a illustrates the snap-to-grid procedure, 
with original road data in red and snapped road data in blue. The snapped road data will 
put multiple road segments (such as road lanes running in parallel) on top of each other, 
after which a geospatial union operator will allow them to be considered as one. We register 
the highest transport mode available for each segment for later use. The  collapse/snap 
operations do cause unwanted artefacts as well, and an array of techniques is applied to 
remove these from the graph, each technique simplifying the graph further. Eventually, 
the snapped graph edges are unsnapped again, vertex-by-vertex, to arrive at an original 
coordinate pair that is true in the source data for a road in the same road class. This restores 
coordinate accuracy to some extent. The overall effect is illustrated in Figure 8b, with the 
original data shown in red as before, and the resulting unsnapped road data that is used 
in the graph shown in green. This simplification method leads to a systematic shortening 
of roads (in both metric length and travel time), which is likely less severe in flat areas as 
compared to hilly or mountainous areas.
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FIGURE 8 Original OSM roads for an area around Mangabe, Madagascar 

A. ORIGINAL OSM ROADS AND THEIR 
SNAPPED-TO-GRID COUNTERPARTS 

B. ORIGINAL OSM ROADS AND THEIR 
UNSNAPPED COUNTERPARTS

Notes: The village of Mangabe is located on the northern shores of Lake Itasy, approximately 80 km 
west of Antananarivo. In both figures, original road data is shown in grey. In Figure 8a, snapped 
road data is shown in blue, and in Figure 8b, unsnapped road data is shown in green. 

Source: UN (2020) modified by the authors.

All of the above is done for roads only, as we keep railroads, long ferry stretches, and river 
networks separate. Rivers are only considered if we have river ports for the country, which is 
the case for 12 countries in our target list (Argentina, Brazil, Canada, China, Germany, 
France, the Islamic Republic of Iran, Iraq, Kazakhstan, Peru, the Russian Federation and 
the United States of America). Where ferry routes connect decently with the road network, 
they are simply added. Relevant ferry routes that do not connect well are added manually 
at a later stage of the SWF. Both railroads and rivers are handled as graphs in isolation that 
only connect with the main graph through railroad stations and river ports respectively. 
These  in turn are then connected with the main graph through an artificial, lower-class 
road. We use all river ports and railroad stations available to us. This appears reasonable 
for ports but is overkill for railroad stations, which may be numerous in larger cities. At this 
point in time, we unfortunately have no data with which to filter for stations that are relevant 
to food freight. The added connector segments do not exist in real life as we create them, 
but are assumed to be realistic placeholders in terms of food transports and related costs.

The SWF consists of 16 steps, described as follows:

1. Data entry and preparation: The transport network uses OSM data, which are 
downloaded from the Geofabrik geoportal (Geofabrik, 2021) in a compressed file format 
(Protocolbuffer Binary Format or PBF). Using the polygon boundary of a particular 
country, we cut the PBF file and extract all the relevant data, which include roads, 
railroads and stations, ferry routes and their terminals, and waterways. The extracted 
data are then inserted into the database, which is used in the subsequent steps.

2. Precondition testing: In this step, we identify data that could cause the workflow to 
break at later stages. We specifically look for problematic geometries, and label them 
either as non-included or as to-be-repaired. Such repairs are also conducted in this 
step. Of specific interest are geometries that have unexpected intersections (specifically 
overlaps) with each other.

3. Road segment snapping: In this step, we pursue the snap of each constituent vertex of 
each geometry onto a regular grid, with snap points regularly spaced out at 0.004 degrees’ 
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distance in both longitude and latitude. This means that at the equator, snap points are 
spaced at 445 m, and this number gradually decreases with growing latitude. Such a 
collapse of coordinates may bring multiple vertices onto the same snap point, and thus 
render resulting geometries invalid. After repairs for this, resulting geometries are 
collected and their mutual intersection points are identified, working towards a fully 
noded network. We use a tiling approach to battle computing time complexity, which 
requires a merge phase for the per-tile results. The approach aggregates over edges of 
multiple road classes, so assigning a proper road class to each resulting segment is also 
required after the merge. This is one of the two most time-consuming SWF steps.

4. Road segment reconciliation: While the previous step regularized graph segments in 
terms of coordinates, it also created geometric artefacts (such as two-vertex edges with zero 
length), which need to be removed from the graph. In this step, we find several anomalies 
and simplify the graph further, while leaving intact its topology. Two  fundamental 
techniques are used: The first is topological simplification, and consists of a search-and-
replace of edge combinations that form unwanted structures in the graph, such as small 
triangles and semi-parallel edges with shared end nodes. These structures are traced 
and removed, while ensuring a correct graph remains. The second technique, which we 
call long-edging, consists of finding maximal stretches of edges of the same road class 
by combining two-degree nodes. Such stretches can be replaced by a single edge that 
has a union geometry. These two techniques are also time-consuming; hence this step, 
together with the preceding, is the most performance-intensive. We made significant 
effort in the implementation to also allow for the handling of the biggest countries in 
terms of data (China, India and the United States of America). 

5. Road segment unsnapping: In this step, we take each edge and map all its vertices 
back to a nearby known position in the original road data. We respect road class and 
map back only onto an original road of the same class. To some extent, this repairs the 
coordinate accuracy of constituent vertices. The unsnapping method is based on a large 
set of (snap/unsnap) point pairs that is built up in advance. Guarantees are built in to 
ensure that valid geometries are delivered.

6. Graph repairs I: While the previous steps depended in large part on geometric 
computations, the resulting graph is an abstraction of reality in which geometry does not 
play a significant role. This step therefore aims to construct a graph where nodes have 
numeric identifiers, and where edges are primarily characterized by the two identifiers 
of their end nodes, along with attributes such as edge length and edge cost. We devised 
a mechanism to derive a unique (big integer) identifier from a location’s coordinate pair; 
this allows us to construct a bijection (one-to-one correspondence) between geometric 
points and node identifiers. This step creates the graph as a combination of a node set, 
an edge set and a graph set.

7. Urban footprinting: This step aims to further simplify the graph by removing the high 
number of road edges that are usually generated within the urban footprint, and replacing 
these with a simple, artificial, skeleton road system that allows for the connection of roads 
entering the urban footprint. The base data for this step is the GHSL urban footprint 
data set, which is raster-derived. We generalize the polygons with a line simplification 
mechanism and a subtle tolerance factor that is just high enough to remove the raster 
cell effects that are present in the original. Next, any overlaps between road segments 
and the urban footprint are removed. In each case, the overlapping segment removed is 
replaced with a straight segment which connects to the nearest vertex of the artificial, 
skeleton road network as previously created for the city, using an approximate medial 
(skeleton) axis. While this step mostly only affects residential roads (if included), it may 
reduce the number of urban road segments by a factor of ten or more.
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8. Graph repairs II: This step involves revisiting the graph once more and performing a 
series of minor clean-up actions.

9. Ferry routing: The OSM data includes ferry routes, but these display rather diverse 
modes of connecting to other network elements. Here, we include only the ferry routes 
that directly connect with road segments at both ends of the route. Additional ferry 
routes are covered in the step involving manual segment addition. For the present, 
ferry terminals are ignored.

10. Railroad routing: As OSM data represents railroad segments as single-track entities, 
railroads require a similar approach as that used for roads, to arrive at a more simplified 
network topology. In principle, we follow a snap/unsnap cycle here, as we did for roads 
with similar simplification techniques (as described previously). The railroads are kept 
separate from roads because points where they spatially overlap are not points where 
a change of transport mode is possible. Thus, we also model railroad stations as “mode 
change points”, enabling this by adding a connector road segment to each station. 
Unfortunately, current OSM railroad station data do not give us enough information to 
decently filter between passenger-only stations and others; this means our networks 
include more stations than are actually available for food transport.

11. Trade station inclusion: These entities need to become first-class nodes in the network 
graph. We treat trade stations within an urban footprint differently from those outside 
of it. For the latter, we essentially snap the trade station to the nearest node and split up 
the edge if needed. For urban trade stations, we leave the position unchanged, but create 
a connector road to the urban road network.

12. River routing: Inclusion of rivers is similar to that of railroads in the sense that no 
connector nodes should be constructed in the graph such that they overlap spatially with 
roads or railroads. The only nodes that allow a change of transport mode will be those of 
river ports; though we exclude a river port if very close to a seaport, as they are likely the 
same. River ports are considered first-class nodes that connect with river edges, and are 
also connected to the main network by an added connector road. The implementation of 
this step leaves some room for improvement; for example we are quite certain that for 
some countries our set of river ports does not adequately represent the ports used for 
food transport. Moreover there is often a high number of unused river edges – namely 
those that do not connect to any river port – which should be removed. Lastly, we should 
ensure that end-of-river river ports become fully connected to nearby seaports.

13. Segment lengths and costs: This step revisits the graph’s edges again, ensuring that 
end node identifiers are proper and that the length of edges and the cost in travel time 
are appropriately computed. The scheme for node identifiers is as discussed previously. 
Edge length in metres is the length of the associated geometry. Edge cost is determined in 
minutes of travel time, based on edge length and on the cruising speed for the transport 
mode in the country at hand. Where such values are unknown for a given country, 
default global values are in place. Edge costs are thus minimal estimates, and are likely 
lower than travel time over the corresponding edges in real life.

14. Manual segment addition: The last data generation step is executed manually, based 
on a visual inspection of the emerging network and on reports of unconnected cities that 
are fed back from initial transport model runs. We have found this scrutiny crucial to 
obtaining reasonably correct and complete networks. While some countries’ networks 
appear to need little interference of this type, there are other countries for which we 
encountered surprising network omissions. For instance, exclaves may present problems 
of overall connectivity, as is the case for Alaska (United States of America), Kaliningrad 
(Russian Federation) and the Nakhchivan Autonomous Republic (Azerbaijan). For these, 
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main roads through other countries (Canada, the Baltic states and Belarus, and Armenia) 
were included manually, so as to allow for transport between the network components. 
Islands and even island states also presented connectivity issues when insufficient ferry 
routes were included, with Indonesia overall and Hawaii (United States of America) being 
points in case. Where ferry routes were known to exist, we included them; however, in 
cases where these were unknown, we may have left islands disconnected from the main 
network. In addition, we did not attempt to connect islands that have no city as defined 
for this project. Lastly, some countries show cities which are off the network, sometimes 
apparently by design. This is the case in Ethiopia for example, where many rural cities 
are not connected by a major road, even when one is nearby.

15. Data delivery: The data delivery step simply constructs four data sets from the results 
obtained: the country’s cities, the country’s trade stations, the country’s transport graph, 
and an adjusted version of that graph for city node centrality analysis. They are created 
as materialized views for direct software consumption (such as the transport model), but 
can also be exported into various formats. These include GeoJson or Keyhole Markup 
Language (KML) for the web; PostGIS, SQLLite or SpatialLite for databases; and KML, 
Shapefile or Geopackages for GIS (Geographic Information System).

16. Data clean-up: This is a simple step in which intermediate data results created during 
the workflow are removed from the database.

3.2 The four-step transport model

Our transport model is based on the well-known four-step travel demand model (see for 
example, Ortúzar and Willumsen, 2011), which was developed in the United States of 
America in the 1950s, and which is still the main transport planning tool currently used at 
different spatial scales. The theoretical basis of this model lies in travel demand theory and 
random utility theory. Its main purpose is to predict the amount of travel (normally in terms 
of people and vehicles over a network). It is used for the analysis of the current situation and 
for forecasting.

The model is based on the execution of four consecutive steps: trip generation, 
trip distribution, mode choice and trip assignment. Trip generation involves an estimate of 
the number of trips made from a given zone, often based on land use and socio-economic 
information; and the number of trips attracted to a zone, often determined from land use 
characteristics/functions such as employment, shops, etc. 

In our model, we use agricultural production in tonnes for each zone (catchment) to 
represent production, and food available for consumption in each zone (catchment with one 
city) to represent attraction. We therefore work with goods rather than with trips. A skim 
matrix is created to hold the origins (O), the destinations (D) and the impedance (travel time) 
between each origin and destination. 

This matrix is useful to calculate distances and travel times between the nodes, but it 
does not tell us how much of the production from a particular catchment goes to any other 
catchment(s), or specify which catchments it goes to. That is calculated in the second step 
(goods distribution) where we use a doubly constrained gravity model, analogous to Newton’s 
gravity model. This model assumes that large production areas and large cities are more 
important poles of attraction than smaller ones. It also assumes that locations that are close 
to each other attract more goods travel than locations that are spaced further apart. 

We use the crop production total in each catchment as one constraint, and the total 
quantity of crop available for consumption in each catchment as the other constraint. 
To distribute the production across catchments, we estimate a so-called distribution function. 
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This is usually of the negative power function or negative exponential type, whichever is 
more fitting to the data. As a result, we get a matrix with discounted impedances. This matrix 
needs to be balanced iteratively using what is known as the Furness method, to ensure 
that the production and consumption figures for O and D are correct. Once that is done, 
we know how much product a catchment receives, where the goods come from, and where 
the production in each catchment is going; in other words, we know all the flows between 
production and consumption catchments. In transport terms this would be the trip matrix; 
we call it the goods matrix. 

The third step involves the distribution of trips over different modes. As we focus on the 
flow of goods in tonnes and not on which vehicles (with their specific capacities) transport 
the goods, we ignore this step. Nevertheless, we introduced railroad and river networks in 
the model, next to the road-based networks. These networks are provided with their own 
impedances. We do not really analyse the specific proportions in which goods are transported 
by different modes; rather we look at the total that is transported.

In the fourth step, we use this balanced matrix to model the flows over the network. 
We apply a so-called all-or-nothing procedure, which uses the calculated shortest route 
between every origin–destination (OD) pair, selects the links involved, and assigns the flow 
from the matrix to these links. The links could be road links, railroad links, river links, or a 
combination – depending on which sequence of links provides the shortest route between 
the OD pair. More complicated methods use road / railroad / river capacity in relation to 
flows, but in view of data limitations, this was not feasible here.
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4 Metrics

K E Y  M E S S A G E S

We measure food transport network resilience with three main indicators: 
proximity-based resilience, relative detour cost and alternative route availability.

Proximity-based resilience captures the way food is distributed between 
production and consumption area. When average travel distance is higher than 
the optimum, systems are not very resilient.

Relative detour cost evaluates the amount of extra tonnage-minutes generated 
when a critical transport link is closed.

Alternative route availability measures the availability of alternative transport 
links when a given critical link is closed.

In this section, we outline the types of static graph metrics and characteristics of the 
transport network, as well as our metrics for food transport network resilience. Nigeria is 
used as example. 

4.1 Static graph metrics for the transport network

We refer to Nelson et al. (2020) for a discussion of theoretical background on resilience in 
transport networks, and for a categorization of related metrics. In this section, we focus 
on metrics that can be derived directly from the country graphs that result from the SWF 
described in the previous section, or from the same graphs but with additional semantic 
attributes. Such annotations may be labels for graph nodes (for example to identify cities) or 
graph edges (for example to provide transport mode and class), and may involve positioning 
information that allows for geospatial inference.

In addition, static graph metrics may be scale-dependent (thus indicating the scale or 
size of the graph) or scale-independent (thus capturing a characteristic that appears not to 
correlate with graph size). Both types of metric have their uses: scale-dependent metrics 
help to quantify graph size, and can be used in the interpretation of resilience metrics that 
are derived later (some of these display a correlation with size, which for certain purposes 
may need to be factored out). The scale-independent metrics allow for direct graph-to-graph 
(and thus country-to-country) comparisons. In the explanations that follow, the “#” symbol 
represents a count of entities.

Our SWF generates a view of a country’s transport network that is not entirely realistic in 
every way. Our treatment of the network within the urban footprints is of specific note here, 
as it is highly artificial (yet usefully simple). As all urban footprints are treated in this way, 
we judge this to be an acceptable compromise. One exception however, relates specifically 
to the degree centrality of graph nodes that represent cities, as the simplification workflow 
disrupts city node degrees significantly. For this specific metric, we therefore work with a 
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graph reconstruction in which city nodes display a more natural edge connectivity that is 
worthy of reporting and analysis.

The role of static graph metrics is one of early warning: their computation is mostly 
simple and straightforward, and thus allows for the rapid detection of resilience concerns. 
Future work will elaborate on how spatial scale affects such analysis, and whether our tools 
can work at the subnational level as well. The preceding discussion on the different types of 
metric allows our static graph metrics to be categorized, and we discuss the metrics that we 
derive for each category in turn.

The first split-out separates topological metrics from traffic-related metrics, which 
require notions of distance or travel time.

Scale-dependent topology-based metrics characterize the graph size in some way. 
The direct base metrics are #components, #nodes and #edges. The more involved metrics are 
#articulation nodes and #maximal independent sets. An articulation node is a node whose 
removal would increase the number of graph components. An independent set consists of 
nodes that are not pairwise direct neighbours of each other in the graph; it is maximal if 
more nodes cannot be added to it while keeping it independent. Both metrics will generally 
correlate positively with graph size, and as such are relatively less useful.

The scale-independent topology-based metrics that we derive are average degree; 
alpha, beta, and gamma indices; assortativity; and articulation ratio. All of these are 
measures of connectivity, and the first four are strongly intercorrelated as they express some 
ratio between #nodes and #edges. Assortativity is a metric that expresses to what extent 
degrees of neighbouring nodes correlate; it is a Pearson correlation coefficient. Articulation 
ratio is the ratio between #articulation nodes and #nodes, and can thus be interpreted as a 
node vulnerability index.

There are also two scale-independent centrality metrics that we consider: degree 
centrality focuses on nodes and their degree as a measure of importance, and average 
absolute degree centrality is therefore a proxy for connectivity. Betweenness centrality also 
focuses on nodes and determines how often the node is on the shortest route between two 
other nodes. It can be seen as a proxy for sensitivity to the risk of node failure. We determine 
average absolute betweenness centrality over all nodes in the graph. This is the most 
computationally intensive metric that we apply.

The scale-dependent semantic metrics are #cities and #trade stations; we may include 
more when looking at different transport modes (which we have not included here).

Various scale-independent semantic metrics can be identified. One such metric is local 
sustenance percentage, which derives from the food balance situation per catchment and 
crop that we take as the starting point for the transport modelling: we know local production 
and food available for consumption; we can therefore determine how much food (per crop in 
tonnes) can maximally stay and will minimally need to enter or leave the catchment. In this 
context, trade stations can be seen as catchments where no food stays local. A summation 
over catchments and crops can provide the total volumes for food tonnage that stays local 
and for that which is transported, leading to the country’s local sustenance percentage. 
Other metrics can be derived from such base data.

The scale-dependent traffic-related metrics are diameter, area size and pi index. 
Diameter is defined as the maximum of the shortest travel time required to reach one city 
from another. It is thus a travel time, and a one-dimensional size characteristic. Area size 
is the spatial size of a concave hull around all the city nodes of a given country, which 
uses a fixed tightness setting. It is expressed in km2 and is thus a two-dimensional size 
characteristic. Pi index is the sum of travel times over all edges divided by diameter; it is 
thus a one-dimensional size characteristic, and can be used as a proxy for network density.
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The scale-independent traffic-related metrics are the eta-index and detour index. 
The first is best interpreted as the average edge length over all edges, measured in travel 
time. The second relates to routes between city pairs and is the ratio between actual travel 
time and fictitious travel time over a straight primary road edge. This means that 1.0 is as 
fast as such a virtual road would be, and below 1.0 is even faster.

4.2 Proximity-based resilience of the food transport network

The first type of food transport network resilience we consider is related to the food matrix 
– that is, the way food is expected to be distributed between the areas where it is produced 
and the areas where it is available for consumption. We call this proximity-based resilience. 
The OD food matrix estimates the tonnage of crops between origin zones (where crops are 
produced) and destination zones (where crops are available for consumption). The zones, 
which are catchment areas around all cities, are shown in Figure 9, using the example 
of Nigeria.

FIGURE 9 Cassava production and available for consumption, 
per catchment, in Nigeria 

A. CASSAVA PRODUCTION

Cassava production (t)
0–67 942
67 942–177 787

338 162–612 687
612 687–1 199 782

177 787–338 162

B. CASSAVA AVAILABLE FOR CONSUMPTION

Cassava available 
for consumption (t)

16 136–106 414
106 414–238 493

573 735–1 429 168
1 429 168–3 330 594

238 493–573 735

Source: UN (2020) modified by the authors.

The total attraction in the model is based on the total available for consumption and export 
of crops (in tonnage). The total available for consumption is equal to the total production 
plus import minus export, and is distributed proportionally to the population of each 
zone. The import and export are distributed over the trade stations according to the trade 
model. We distinguish between specific crops, as each crop may have different transport 
characteristics. First, the distribution of the production can vary widely for different crops. 
Second, the distribution functions can also be different. For example, highly perishable 
foods such as fruits may be transported over shorter distances than non-perishable foods 
like rice. The  distribution function describes the propensity to transport food between 
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A and B, irrespective of production and attraction. We use an exponential decay function as 
a distribution function, as follows:

f (c) = e–βc

with c as the travel cost between origin and destination, and β as the slope of the 
distribution function. We use travel time as the best available option to express cost of 
transport (given that “time is money”). The coefficient β describes how fast the attractiveness 
drops with travel time (cost). In principle, it is most economic to consume food where it is 
produced. However, market mechanisms, consumer preferences and various other factors 
can all contribute to a shallower distribution function (with a relatively low value for β), in 
which longer travel times are still relatively attractive even when there is attraction nearby 
(that is, people may travel further away even when there are closer locations). We use an 
internal travel time per zone of 20 minutes, which implies that all food transported in that 
time period is consumed within the zone.

Irrespective of the value of β, systems will be more resilient when there is a balance 
between production and attraction. If for each zone, production and demand are the 
same, then crops do not need to travel for long periods (even if that will happen due to 
factors that lead to a low value for β). In that case, systems are optimally resilient against 
network disturbances, because the possibility to consume the crops locally is always present 
(in theory). In contrast, if crops are produced in one part of the country and are consumed 
in another part, they will always need to be transported. This will result in longer trip 
durations, even if β is high (and even if there is no propensity to transport the crops on 
journeys with such long durations). In that case, systems are less resilient and instead more 
vulnerable, for example if for some reason the network connections between production and 
consumption areas break down.

In other words, when the average travel time is much longer than in the optimal situation 
(that is, when production and attraction are perfectly in balance), systems are not very 
resilient. The indicator for proximity-based resilience is the ratio between the average trip 
duration for the optimal situation and the actual situation. Table 4 shows the results for ten 
crops in Nigeria.

TABLE 4 Results for 10 crops in Nigeria using an internal transport time of 
20 minutes

Crop Transport time (min.)

Cassava 167

Fruits 189

Maize 112

Plantains 253

Pulses 163

Rice 111

Sorghum 219

Vegetables 113

Wheat 518

Yams  147 
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TABLE 4 (cont.) Results for 10 crops in Nigeria using an internal transport time of 
20 minutes

Crop Transport time (min.)

Average 155

Best case 28

Proximity-based resilience 0.18

Notes: The table presents the results after 50 Furness iterations, using an internal transport time 
(within zone) of 20 minutes. For the optimal situation, production is equal to the attraction for each zone.

Source: Authors’ own elaboration.

4.3 Route-based resilience of the food transport network

Relative detour cost
The second type of food transport network resilience is related to the effect of disruptions in 
the transport network on the movement of goods. Often, sections of transport networks are 
closed off, for example due to natural disasters, accidents or political instability. To evaluate 
the effect of such types of closure, we introduce disruptions on particular transport links and 
evaluate their effect. We outline three route-based resilience metrics below. 

After the OD food matrix is estimated for a given β, the food volumes can be assigned to 
the network links. For the assignment, we assume that food is transported over the paths of 
shortest travel time. This assignation to links gives us link intensity: the total food volume 
[tonnes] that is/will be transported over the link, as contributed by the various shortest 
paths that make use of the link. To estimate the resilience, we select the 20 links of highest 
intensity, and we calculate the extra tonnage-minutes resulting from the closure of one such 
link. To select the high-intensity links, we perform the following procedure:

1. For each link with traffic, we close the link and then calculate the travel time (cost) 
required on the alternative route between start and end nodes of the closed link.

2. We multiply this travel time with the link’s intensity. The higher the resulting value, 
the higher the impact of the link removal. We then select the links with the highest 
impact values. We cannot simply select the 20 links with highest intensity, because this 
may result in selecting a number of links along the most important route, which would 
simulate a similar closure multiple times. Therefore, we select all OD relations over the 
link with the highest impact value.

3. We assign again, but disregard transports over selected OD relations from the previous 
iteration(s).

4. We iterate back to the first step and repeat this procedure until 20 links are selected. 

This route-based resilience metric, which we call the relative detour cost, is the relative 
difference (in percent) between the tonnage-minutes of the normal situation and the situation 
with the 20 high-intensity links removed. Figure 10 shows the high-intensity links for Nigeria. 
As the figure illustrates, these links correspond quite well to expectations, in that they are 
predominantly located in the middle of the country, serving the north–south routes that are 
important for food transport. The relative detour cost is 23.1 percent, or 1.8 percent on a total 
country basis.
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FIGURE 10 Selected critical links based on link intensity times link distance, 
Nigeria

Notes: The selected critical links are shown in green.

Source: UN (2020) modified by the authors.

Alternative route availability
When estimating network-based resilience with relative detour cost, there is one important 
issue regarding step 1 of the procedure as described previously. We can only select a link 
for which there is an alternative route between its start and end node, and consequently 
between the origins and destinations of the OD relations using that link. If there is no 
alternative route, the link cannot be considered. For most countries this is not really an 
issue, because such links are rare and only occur in the periphery of the network. However, 
for some countries with a sparse network, this is an issue. A good example is Somalia, as 
shown in Figure 11. The red link in the figure is a critical link between the north and south 
of the country, and serves as the only connection in our simplified network. If this link is 
closed, there are no alternative routes between the north and south. This link is therefore 
not considered in the resilience of the network based on relative detour cost, because there 
is no detour or alternative route for it.

To include this type of resilience, we calculate the total tonnage (T) for all links, as well 
as the tonnage for any links for which there is an alternative route when the given link is 
closed. The ratio between the two gives the second route-based resilience metric, called 
alternative route availability.2 For most countries this value lies above 0.80, indicating 

2 Due to network size and complexity, our alternative route availability calculation for India used a different 
workflow, based on multiple subsamples of the transport network.
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that alternative routes are readily available. For Somalia however, it is around 0.31. In other 
words, 69 percent of the country’s tonnage is transported over links for which there are no 
alternative routes. This is an indication that this network is not resilient at all. 

FIGURE 11 Sparse network for Somalia

Notes: There are no alternative routes available for the critical link, as shown in red.

Source: UN (2020) modified by the authors.

People affected
The closure of high-intensity links (in the relative detour cost metric) will have an impact 
on the population that consumes that travel-delayed food. We estimate the impact on the 
population purely in terms of people affected by delay, by considering each closed link in 
turn and determining which (OD) pairs of nodes (or catchments) are involved when the link 
is removed, and whether they are O or D catchments (or both, if goods are moving both ways 
across the link). Then, without double counting, we compute the average number of people 
in the D catchments (in other words, the consumers) affected across all link closures, based 
on the known population per catchment. This metric does not consider the quantity of food 
that is delayed: in other words the count of people affected in a given catchment is the same 
regardless of the quantity.
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4.4 Correction for country size

In the next section, we compare the resilience metrics of different countries. When we do this 
for proximity-based resilience and relative detour cost, we find a clear correlation between 
resilience metrics and country size. While this correlation can have various causes, it can be 
divided into the following two components:

1. “Artificial scale effects”, for which a correction is justified. For example, the average 
trip length, and hence the proximity-based resilience, of a small country is constrained 
by the physical size of the country. Similarly, detours will on average be shorter for 
small countries, but relative detours will on average be longer. This is simply because in 
general, there tend to be more alternatives for longer trips.

2. “Real effects”, which should not be corrected for. Good examples include population 
and network density. In general, when the population density increases, people will live 
closer to the production locations of crops, and when the network density increases, 
detours will be shorter. They therefore have a real positive effect on proximity-based and 
route-based resilience respectively.

The most straightforward way to correct is to use the physical size – for example, the square 
root of the country area – as a scale factor. By multiplying the proximity-based resilience and 
relative detour cost metric with this scale factor, artificial differences in both these metrics 
may be levelled out between countries of different sizes. However, hidden factors such as 
population density may also correlate with country size. For example, small countries typically 
have higher population densities, which have a real positive effect on the proximity-based 
resilience metric. We therefore used the square root of the total tonnage of transported crops 
as a scale factor in our correction. We multiplied the proximity-based resilience metric and 
the relative detour cost metric with this scale factor (and divided by the average scale factor 
to keep the same order of magnitude in both metrics). In doing so, we tried to correct for 
the artificial effects (for the same population density, you actually correct for country size), 
while at the same time avoiding overcorrection due to other hidden factors in the correlation 
between our resilience metrics and country size. Only when we compare all countries in the 
following section will we use the corrected proximity-based resilience metric and corrected 
relative detour cost metric to take the artificial scaling effects into account. This correction 
is not applicable to the route redundancy and people affected metrics.
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K E Y  M E S S A G E S

Where food is transported more locally, the network will not be overly affected 
by disturbances, independent of its quality. In countries where food is moved 
over longer distances but with a dense network (for instance, the United States of 
America) there will also be relatively little effect. But in countries with networks 
that are both low in food transport efficiency and density (mostly low-income 
countries), there will be a significant effect. 

High food transport efficiency is found in high-income countries (for example 
in Europe), as well as in densely populated countries like China, India, Nigeria 
and Pakistan.

In sub-Saharan Africa, some countries produce food relatively close to where it is 
consumed, and thus have higher proximity-based resilience.

A simulation of the impact of localized 1-in-10-year flooding events in Mozambique, 
Nigeria and Pakistan reveals the loss of network connectivity when links become 
impassable, potentially affecting millions of people.

A vast amount of spatial and statistical data needs to be brought together and 
harmonized before such models of food transport network resilience can provide 
meaningful results.

We follow the same order as in the previous section, first presenting the static graph 
metrics/characteristics of the transport network, followed by the metrics for food transport 
network resilience.

5.1 Static graph metrics

Primarily from OSM base data, the simplification workflow derives simplified graphs per 
country, thereby allowing various comparisons between countries. We present here an 
analysis of the characteristics of graphs by country, and subsequently share some early 
findings. This work comprises approximately 90 countries. These statistics allow for research 
into various correspondences, such as how many people in the population must be served 
per network node.

The direct scale-dependent topology-based metrics typically consist of basic counts of 
the graph’s components, nodes and edges, as well as more involved counts of articulation 
points and maximal independent sets. An articulation node is a node whose removal will 
break the graph; it can thus be used to assess node vulnerability. A maximal node set is a 
set in which no two nodes are direct neighbours – the lower the maximal node set count, 
the denser the graph is – it can thus be used to assess connection density. These numbers 
do not seem telling in themselves, but when normalized by some appropriate size gauge 
for the graph or country, they may help to display more useful patterns. Some of these 
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relative metrics are classical graph metrics (such as average degree), as discussed below. 
The articulation node ratio simply determines how many nodes there are per articulation 
point. A high ratio means a low node vulnerability.

A word of warning in interpreting results: Due in large part to data complexity, we did not 
include tertiary roads in the graphs of 16 high-income countries: Australia, Brazil, Canada, 
China, Germany, France, Italy, Japan, the Republic of Korea, Mexico, the Russian Federation, 
Saudi Arabia, South Africa, Ukraine, the United Kingdom of Great Britain and Northern 
Ireland, and the United States of America. This has affected various graph counts and derived 
metrics, and means that results cannot readily be compared with other countries. At the 
other end, for three low-income countries (Gabon, Guinea-Bissau and Liberia), we included 
unclassified roads and tracks to ensure node connectivity and alternative routing.

Any of the above metrics can be set off against population size or level of economy. 
In Figure 12, we display gross domestic product (GDP) per capita against the number of 
people served per network node. As the figure illustrates, while some low-income countries 
such as Burundi do well, it is typically high-income countries that display low headcounts 
per node. (Incidentally, many of these would have had more nodes if all their roads had been 
included, leading to even lower scores.)

FIGURE 12 Population per network node vs gross domestic product
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The scale-independent topology-based metrics are expressions of connectivity, and many 
are highly correlated. High connectivity is an advantage, as it offers alternative routing when 
parts of the network infrastructure collapse. For assortativity (see Figure 13), we must first 
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understand that our graph simplification removes as many two-degree nodes as possible, 
thereby pushing down the scores. Removal of such nodes is appropriate because a high 
percentage of these nodes carry no intrinsic meaning for the network: they do not represent 
a feature of some sort. Removal of tertiary roads has likely had a positive impact on some of 
the assortativity scores for high-income countries. As seen in Figure 13, it appears that scores 
between -0.025 and 0.0 characterize mature transport networks in our study, and that values 
below -0.025 are indicative of less well-developed networks. Lower assortativity means there 
are more instances in which nodes of different degree values are neighbours; this happens 
especially when higher priority roads more frequently intersect with lower priority roads, as 
this causes nodes with more alternating degrees. This may be characteristic of a transport 
network’s “development stage”. Figure 13 bears a strong resemblance to similar figures for 
connectivity metrics (which we do not include here). 

Among the static graph metrics, our two scale-independent centrality metrics were 
the hardest to compute. Absolute betweenness, in particular, presented performance 
issues for the largest of countries, and we have not yet produced scores for China, India 
and the United States of America. Regardless, the charts for GDP versus degree centrality 
and log(betweenness centrality) show an almost identical pattern to Figure 13, with high 
variability in scores between low- and lower-middle-income countries, and more congruence 
among higher-income countries. Average absolute degree varies between 1 and 9 for the 
former group, and between 7 and 9.5 for the latter. Average absolute betweenness varies 
between 5 000 and 10 000 000 for the former, and between 100 000 and 50 000 000 for 
the latter.

FIGURE 13 Assortativity per network vs gross domestic product
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Scale-dependent semantic metrics have proven to be a determining data complexity 
factor in some of our graph computations. One scale-independent semantic metric that we 
believe is fundamental is local food sustenance – the maximum percentage of food volume 
that is produced and consumed in the same catchment. In Figure 14, local food sustenance 
is inversely correlated with GDP per capita, as agriculture in many countries is not a high-
opportunity industry. There is high variability between lower-income countries however: 
those with reasonably functioning food production systems show high local sustenance, 
while those with failing systems show lower scores. High local sustenance is one way to 
lower vulnerability against infrastructural failures. Higher-income countries can more easily 
afford to bring more food into a city.

FIGURE 14 Local food sustenance percentage vs gross domestic product
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Our scale-dependent traffic-related metrics provide a notion of graph or country size, 
against which other metrics that reflect size dependency can be normalized; countries freed 
from size dependency thus become more comparable. We conduct such comparisons in 
the next section. Here we display the relationship between a country’s diameter and the 
square root of its area size. Both can be used to gauge size. Figure 15 shows how they 
are related. A  linear fitted trendline provides an R2 of 0.56; countries above the line are 
rounded in shape, whereas those below are elongated. China, the Russian Federation and 
the United States of America are the most prominent examples of the former, while Chile, 
Indonesia, Japan, and the Philippines are examples of the latter. Some of our other metrics 
often feature eccentric scores for such countries.
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FIGURE 15 Country area size (square rooted) vs diameter
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Of the scale-independent traffic-related metrics, we want to draw attention to the detour 
index. It is a simple metric that characterizes the speed with which one can travel between 
cities in the country, and thus it is a transport quality characteristic. Where its value is 
below 1.0, travel is fast; where it is above 1.5, travel is slow. One can expect higher-income 
countries to have lower detour indices, and this is corroborated in Figure 16.

FIGURE 16 Detour index vs gross domestic product
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5.2 Resilience metrics

Proximity-based resilience
The proximity-based resilience metric is the ratio between the average transport time in 
the ideal situation (when all food that is produced in a catchment is also available to be 
consumed in the same catchment) and the average transport time in the actual situation 
(when food produced in a catchment is distributed to all cities). If the average transport time 
for the actual situation in a country is relatively short, this indicates that food is available for 
consumption relatively close to production locations. (The ideal situation being one in which 
transport times are at their lowest because all food is supplied close to where it is produced.) 
The results are also a good indication of the food transport systems’ overall sustainability for 
the crops involved. The metric is mapped in Figure 17, and plotted against average transport 
time in Figure 18.

FIGURE 17 Proximity-based resilience
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Source: UN (2020) modified by the authors.

Figure 17 shows that high food transport efficiencies can be found in the high-income 
European countries, but also in densely populated lower-income countries like Bangladesh, 
China, India, Nigeria and Pakistan. The ease of transporting food from production locations 
to consumers not only depends on the quality of the network, but also on “real” (or Euclidean) 
distances between production and consumption. For example, Egypt scores well due to high 
population density in agricultural areas that are situated along narrow, well-connected 
corridors by the coast and the Nile River. And despite their lower quality networks, the 
relatively high resilience scores of some sub-Saharan countries reflect that in the current 
situation, food is produced relatively close to where there is demand. It is also noteworthy 
that these distances increase in large countries with relatively low population (density) 
numbers, such as Brazil, Canada, and Australia. 
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FIGURE 18 Proximity-based resilience vs average transport time
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Figure 18 shows a clear (negative exponential) pattern, where countries that have shorter 
average transport times have higher proximity-based resilience. This can be explained as 
follows: Proximity-based resilience represents the ratio between the average transport time 
in the ideal situation (when all food that is produced in a catchment is also supplied in the 
same catchment) and average transport time in the actual situation (when food produced in 
a catchment is distributed to all cities). If the average transport time for the actual situation 
in a country is relatively short (as in the examples of France, Nepal, Tunisia, Ukraine, and the 
United Kingdom of Great Britain and Northern Ireland), this indicates that food is available 
for consumption relatively close to production locations. This situation is more comparable 
to the ideal situation, in which transport times are at their lowest since all food is supplied 
close to where it is produced. The results are also a good indication of the food transport 
systems’ overall sustainability for the crops involved. In Tunisia and the United Kingdom 
of Great Britain and Northern Ireland for example, food transport systems are organized 
such that food travels over relatively short distances, resulting in much lower costs and 
negative externalities such as energy consumption and pollution. Unsurprisingly, this is not 
the case for countries like Brazil, Canada and the United States of America. These countries 
are of course much larger than those previously mentioned, but they have also organized 
their food production and distribution systems differently. Other large countries such as 
China and Nigeria have organized their food production and distribution in a much more 
resilient and sustainable manner. China’s position here as an outlier is also influenced by 
our scaling against √tonnage which has amplified its score. We return to this in the following 
section, with respect to the challenge of developing such metrics across diverse geographies, 
economies, transport network topologies and qualities. 
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Network-based resilience
For relative detour cost, and as shown in Figure 19, higher values mean that a longer detour 
time is incurred if routes are removed from the network due to disruption. The alternative 
route availability in Figure 20 is a measure of route alternatives or route options. A score of 
100 percent means there are always alternative routes between OD pairs. Figure 21 shows 
people affected by the closure of high-intensity links (in the relative detour cost metric). 
For all three figures, and as with Figure 17, darker colours in the map indicate better scores 
on the resilience metric.

As may be expected, small, high-income countries have more resilient networks than 
lower-income countries, but some lower-income countries also score consistently well, such as 
Algeria, the Plurinational State of Bolivia, Liberia and Sri Lanka. Relative detour costs are low 
where networks are highly developed, generally indicating that there are alternative routes 
available. However, some large and sparsely populated countries like Canada score low on 
the relative detour metric but quite well on the alternative route availability metric. Canada’s 
network is in general less dense, implying relatively large detours when an important link 
is closed. On the other hand, some elongated countries such as Chile score relatively well in 
network detour costs but poorly in alternative route availability. In such countries, important 
routes may have limited alternatives, especially when confined by mountains. If such routes 
have no alternatives, they contribute negatively to alternative route availability, but they 
do not contribute to the detour indicator (because there is no detour possible). These two 
resilience indicators can be seen as complementary. If a country scores poorly on one of 
them, its network resilience is considered to be low. The relation between both network 
resilience measures is further illustrated in the scatter plot in Figure 22. For clarity, we invert 
the alternative route availability percentage on the y-axis by subtracting it from 100, so it 
shows “no alternative routes (%)”. To clearly distinguish between countries, we use a log10 
scale for both axes. Countries in the top right score poorly in both, and those in the bottom 
left score well in both. Most countries are between these two extremes.

FIGURE 19 Relative detour cost
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Source: UN (2020) modified by the authors.
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FIGURE 20 Alternative route availability
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Source: UN (2020) modified by the authors.

FIGURE 21 People affected
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Source: UN (2020) modified by the authors.
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FIGURE 22 Alternative route availability vs relative detour cost
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People affected adds another dimension to network resilience by considering the 
proportion of the population that is potentially impacted when high-intensity links become 
unavailable. This means that a country may have a resilient network – for example in the 
case of China – but any detours or delays can still impact a significant proportion of the 
population served by food transport routes that include those links. Again, small, dense, 
high-income countries generally score well on this metric. In Figure 23 we see that upper-
middle-income countries generally have a higher percentage of people affected by the loss 
of high-intensity links than any other income group. This may suggest a difficult transition 
in emerging economies, where the food transport network struggles to meet demands in 
the event of disruptions, resulting in higher impacts. There seems to be a trend of lower 
percentages on either side of this upper-middle-income group: In lower-income countries, 
impacts are generally low because of higher local food sufficiency, while in higher-income 
countries, a well-developed network is able to continue providing sufficient food to most 
people despite disruptions.

Overall, food transport efficiency is not strongly related with the income level of a country. 
As mentioned before, population density and more generally, spatial distances between crop 
production sites and consumers are as important if not more important. Countries with 
low network resilience also tend to have low food transport efficiency. If a country has low 
food transport efficiency, food is transported not only locally, but also over longer distances, 
creating important corridor routes serving high-traffic loads. If these corridors are part of a 
sparse network (i.e. one that lacks many alternative routes), it will have a significant negative 
effect on network resilience indicators. However, if food is only transported locally, network 
disturbances will have a limited effect on the country as a whole, even if the network is sparse.
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FIGURE 23 Alternative route availability vs people affected
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Source: Authors’ own elaboration.

Summary observations on results from the four resilience metrics 
Figure 24 shows the relationships between the four food transport resilience metrics by 
country income group (World Bank, 2019). (Note the use of log10 transformations for some 
variables.)

There is little correlation between the four metrics (with the exception of a moderate 
negative correlation between proximity-based resilience and alternative route availability 
for high- and low-income countries). The four metrics capture different aspects of food 
transport network resilience, but do not preclude some interaction between characteristics 
of the network and the ways in which food is transported across it. High proximity-based 
resilience due to high local food sufficiency or short transport times can still lead to low levels 
of alternative route availability and long detours if there are few alternatives. The metrics 
also show no overall pattern between income group and food transport network resilience. 
This suggests a diversity of transport network “configurations” in terms of transport route 
densities, diversity in the spatial distributions of cities and trade stations, and diversity in 
the spatial patterns of food supply and demand. This diversity is more dependent on the 
area and shape of a country, as well as on the distribution of people and agricultural land 
and the ways in which they are connected via the transport network, than it is to country 
income level.

A preliminary typology of countries can be derived from a k-means clustering on the four 
(scaled) metrics. Using Gap Statistics (Tibshirani, Walther and Hastie, 2001), we determined 
that the optimum number of clusters in this case was three. The clusters are mapped in 
Figure 25; as the figure illustrates, there is some geographic grouping (for example for 
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Europe, North Africa and much of Asia) in cluster 1, and (in the Sahel, East and Southern 
Africa, Central Asia and much of Latin America) in cluster 2, whereas cluster 3 is smaller 
and shows no geographic pattern. The first two principal components of the clusters are 
visualized in Figure 26, and while these two components explain over 70 percent of the 
variation in the data set, the size and shape of the clusters suggest the need for caution in 
their interpretation. This is especially the case for cluster 1, though care must be taken with 
interpreting outliers on the edges of the convex hulls in all three clusters.

FIGURE 24 Correlation between resilience metrics (top right), scatter plots 
(bottom left), and their distributions (diagonal and bottom row) 
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FIGURE 25 A k-means clustering on the four (scaled) resilience metrics
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Notes: For special country/region-specific disclaimers see notes of Figure 1. 

Source: UN (2020) modified by the authors.

FIGURE 26 First two principal components of the four (scaled) resilience 
metrics with a k-means clustering
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Quartile statistics for each cluster are provided in Table 5. Countries in cluster 1 
(n = 49) generally have the best performing networks in terms of proximal food availability. 
While  there are alternative routes in case of disruptions, relative detours can be costly, 
with  disruptions affecting 40 percent of the population (interquartile range or IQR:  
31–49 percent). These countries have high food transport efficiency, and may or may not 
have a highly developed and dense network. As food is transported more locally, network 
disturbance will have a relatively limited effect, independent of the quality of the network. 

Cluster 2 countries (n = 33) are where we see the largest potential impact on the population 
from disruptions at 60 percent (IQR: 50–70 percent), and where disruptions have a relatively 
high cost. That said, alternative route availability is generally good, and the proximity-based 
resilience lies between that of clusters 1 and 3. These countries have a lower food transport 
efficiency than cluster 1 and incur higher costs due to disruptions, but their networks are 
able to offer alternative routes to most disruptions, perhaps because they are dense enough. 

A small number of diverse countries make up cluster 3 (n = 7), forming a long and narrow 
cluster that requires caution in interpretation. In general, this cluster represents countries 
with very poor proximity-based resilience, and possibly a lack of alternative routes (although 
the range from Somalia at 31 percent to Saudi Arabia at 81 percent should be noted). 
Where detours are possible, they are generally not expensive in terms of additional travel 
time, and disruptions affect 41 percent of the population (IQR: 40–45 percent). These countries 
have low food transport efficiency and have sparse transport networks that are vulnerable to 
any loss of critical links. The cluster contains both low- and high-income countries.

TABLE 5 Quartiles of resilience metrics per cluster and countries per cluster
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lwq 0.07 0.76 92.1 31.2

med 0.11 1.00 97.0 40.2

upq 0.15 1.35 99.1 49.2

max 0.63 2.91 100.0 72.7
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TABLE 5 (cont.) Quartiles of resilience metrics per cluster and countries per cluster
C

lu
st

er

St
at

is
ti

cs
*

Proximity-
based 

resilience

Relative 
detour 

cost

Alternative 
route 

availability

People 
affected

Countries per cluster, 
by World Bank  

country income group

2

min 0.01 0.67 54.7 39.9
n = 33

LIC: Democratic Republic of 
the Congo, Ethiopia, Haiti, 

Madagascar, Mali, Mozambique, 
Niger, Sudan, Chad, Togo;  

LMIC: Bangladesh,  
Congo, Ghana, Lao People's 

Democratic Republic, 
Philippines, Senegal, Zambia;  

UMIC: Brazil, Colombia, 
Dominican Republic, Ecuador, 
Gabon, Guatemala, Indonesia, 

Iran (Islamic Republic of), 
Kazakhstan, Mexico, Peru, 

Russian Federation, Thailand, 
South Africa;  

HIC: Canada, Japan

lwq 0.03 1.51 75.3 50.4

med 0.06 2.42 84.1 60.0

upq 0.08 3.64 91.6 69.7

max 0.24 17.71 99.1 88.6

3

min 0.00 0.33 31.2 33.7

n = 7
LIC: Somalia,  

South Sudan, Yemen;  
LMIC: Papua New Guinea; 

HIC: Australia, Chile,  
Saudi Arabia

lwq 0.01 0.52 42.7 39.8

med 0.01 0.61 57.5 41.3

upq 0.02 0.89 70.0 45.3

max 0.05 1.93 81.5 61.1

Notes: min = minimum; lwq = lower quartile; med = median; upq = upper quartile; max = maximum.  
HIC = high-income countries; UMIC = upper-middle-income countries; LMIC = lower-middle-income 
countries; LIC = low-income countries. 

Source: Authors’ own elaboration.

 

While these are interesting clusters and trends, we believe that this preliminary analysis 
requires more in-depth interpretation and exploration of alternative clustering methods, 
perhaps considering hierarchical models to acknowledge the wide range of metric scores 
within these preliminary clusters, and with more descriptive subgroupings. Additionally, 
other variables should be considered in the clustering. For example, we have noted that the 
four resilience metrics are influenced by the density and connectivity of the transport network, 
the number and spatial configuration of cities and trade stations, the spatial patterns of food 
supply and demand, and the area and shape of a country. All of these variables exist in our 
results and all are candidate variables for future characterization and grouping of countries 
to better classify the resilience of their domestic food transport networks.
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5.3 Disruption scenarios

In this section we assess the impact of flood events on food transport network resilience in 
three countries: Nigeria, Mozambique and Pakistan. Flooding, whether from flash floods 
or from longer-term stagnant flooding , reduces the connectivity of any transport network, 
impacting the movement of people, goods and societal functioning in general (Pregnolato  
et al., 2017). Direct and immediate impacts may occur when roads become impassable, 
when bridges become unusable (if they are blocked/damaged or washed away), or when lives 
are lost. If there is little material damage, then once the flood subsides the direct impacts on 
the infrastructure may be short-lived. But there can also be long-lasting effects if required 
repairs are slow to occur, which is often the case in lower-income countries. Indirect impacts 
affect a larger area for a longer period of time, for example when there are traffic delays 
and congestion on alternative routes, increased journey distances/durations, increased fuel 
consumption and associated greenhouse gas (GHG) emissions (Pyatkova et al., 2019). Due to 
increasing urbanization, along with the expansion of intra-urban transport infrastructure, 
the built environment – which is in turn critical to economic development – is increasingly 
exposed to extreme weather events associated with climate change (Dawson et al., 2018).

We assess the impact of localized flooding events in Nigeria, Mozambique and Pakistan, 
based on 1-in-10-year flood events. We consider plausible losses of network connectivity due 
to network links becoming impassable due to flooding, either because the link is damaged 
(for example, when a bridge is washed away), or because access to that link is reduced 
(for example, when an access road to a main road or bridge is damaged or submerged). 
These events have a major impact on the local population, not only in terms of reduced 
accessibility but also in terms of impact on all those who are served by the transport of goods 
through those damaged transport links. Finally, there is also a national impact, in that the 
ability of the transport network to efficiently transport goods may be significantly reduced. 
We illustrate the three scenarios below, with maps showing the flood risk, the transport links 
that we assume are affected, and the impact this has on our transport resilience metrics 
at both local and national level, based on the rerouting of origin–destination relations 
(which were previously routed over the disturbed links) over the remaining network.

Nigeria
In the Niger Delta region of Nigeria, where the Niger River empties into the Gulf of Guinea, 
there are large areas that flood regularly and make most roads impassable, particularly 
unpaved and unelevated roads. Most roads in the Niger Delta are local roads, but there are 
also two major roads that run from east to west (as shown by the red links in Figure 27). 
We have modelled a disruption on these two roads, based on a 1-in-10-year flood event.3 
The removal of these links amounted to an increase of 4.7 percent in the total travel time on 
the national network. Across the ten crop groups for which there is the highest demand in 
Nigeria, this scenario led to a 108 percent increase in travel time for trips that would have 
otherwise used the damaged links.

3 While there is some doubt as to whether removing the northern link is realistic, as the bridge is elevated 
(according to Google Street View), it is plausible that access roads become impassable. 
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FIGURE 27 Flood scenario and affected roads in Nigeria

© OpenStreetMap (and) contributors, CC-BY-SA

1:1 000 000

0 10 20 30 405
km

Cities

Affected roads

Road network

0–1 m

1–2 m

2–5 m

5–10 m

10–20 m

¯

Source: UN (2020) modified by the authors.

Transport time detour by crop: Vegetables and fruits have the greatest detour lengths 
and times as percentages of their usual route journey. The distances in km (around 500 km 
for both) and the durations (around six hours for both) are also substantial. These increases 
can be detrimental to the quality of the crops, especially if they are exposed to high 
temperatures and/or humidity for extended periods, for example while being transported in 
non-refrigerated trucks. For all crop groups, the detour was longer than 100 km and more 
than 90 minutes (see Figure 28).

Tonnage diverted and people affected: We can estimate the tonnage diverted on its 
route between origin and destination locations in the regional network (see Figure 29). 
Because the duration of the flood’s impact is difficult to assess, we report these estimates in 
terms of impact per month of closure across all crops, and for all trips through origins and 
destinations – with Lagos, Asaba, and Benin City having the greatest quantity of diverted 
crops in this scenario.



The resilience of domestic transport networks in the context of food security  
– a multi-country analysis 

50

FIGURE 28 Detours by length and duration in the Nigeria scenario, by crop
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B. TRAVEL TIME DETOURS
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FIGURE 29 Tonnage diverted per month in the Nigeria scenario
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We assess the potential impact more locally in the flood-affected area, by considering 
the people affected and the tonnage diverted in the Asaba region (see Figure 30). We look at 
the share of the original origin–destination volumes on the total volumes from those cities, 
to get an estimate of the people affected. This differs by crop; for example, 96 percent of all 
trips delivering cassava to Asaba use the two (now impassable) transport links, which means 
that 1.2 million people are directly affected. This number is lower for sorghum and wheat, 
which are produced elsewhere and routed differently, and are therefore minimally affected 
by the flooding. The figure also shows the tonnage per crop diverted, which is high for the 
two locally produced staple crops – cassava and yams. The rice crop is similar in that it is 
locally produced and affects over 1.2 million people; however the quantity is much lower.

FIGURE 30 People affected and tonnage diverted per month by crop in 
the Nigeria scenario
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Mozambique
Mozambique experiences regular flooding associated with tropical cyclones that affect the 
low-lying coastal areas and deltas of the Zambezi, Pungwe and Limpopo rivers, among others. 
In this scenario, we model a 1-in-10-year inundation near the city of Beira (see Figure 31). 
As a result of this flood scenario, several roads become flooded, which disrupts part of the 
network around Beira and leads to longer transport times. For Mozambique, this scenario 
led to a 103 percent increase in travel time for those trips that would have otherwise used 
the damaged links. For the national network as a whole, the removal of these two links 
resulted in an overall increase in travel time of 1.25 percent.

FIGURE 31 Flood scenario and affected roads in Mozambique

© OpenStreetMap (and) contributors, CC-BY-SA
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Source: UN (2020) modified by the authors.

Transport time detour by crop: All ten crops have substantially long detours (from 200 
to 400 km) in their origin–destination trips. Potatoes have the lowest percentage increase 
(38  percent) while sweet potatoes have the highest (374 percent), suggesting that these 
routes are critical for sweet potatoes. In terms of travel time, the detours are approximately 
between 4 and 6 hours, and range from an increase of 46 percent to over 400 percent – 
again for potatoes and sweet potatoes (see Figure 32).
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FIGURE 32 Detours by length and duration in the Mozambique scenario, 
by crop
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B. TRAVEL TIME DETOURS
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Source: Authors’ own elaboration.

Tonnage diverted and people affected: As may be expected, the greatest impact in 
terms of quantity of diverted crops per month is felt locally in Beira, but is also experienced in 
many other cities that are origins or destinations in the network (see Figure 33). The tonnage 
of diverted goods remains relatively high across several cities, whereas the impact tailed off 
quickly in Nigeria. This suggests that the impact was much more localized in Nigeria than 
in Mozambique.
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FIGURE 33 Tonnage diverted per month in the Mozambique scenario
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We assess the potential impact more locally in the flood-affected area, by considering the 
people affected and the tonnage diverted in the Beira region (see Figure 34). We look at the 
share of the original origin–destination volumes on the total volumes from those cities, to get 
an estimate of the people affected. This differs by crop; for example, while potatoes were not 
affected much in terms of detour length or duration, the damaged network links are critical 
for its transport, and account for almost 100 percent of all trips delivering potatoes to Beira, 
thereby affecting 400 000 people. The numbers for people affected with regard to fruits and 
maize are similarly high.

FIGURE 34 People affected and tonnage diverted per month by crop in 
the Mozambique scenario
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Pakistan
Parts of Pakistan are regularly flooded, impacting the distribution of food across the road 
network. In monsoon periods, local rainfall often occurs in combination with riverine flooding, 
leading to the flooding of large areas. In this scenario, we model a 1-in-1-year flooding 
event in the Indus River plain, in particular the area near Dera Ismail Khan (see Figure 35). 
This  area has in fact undergone recent flooding. In this scenario, the connecting roads 
leading to three crossing bridges are temporarily taken out of the network. For Pakistan, this 
scenario led to a 32 percent increase of travel time for those trips that would have otherwise 
used the damaged links. The removal of these two links resulted in an overall increase in 
travel time of 1.19 percent for the national network.

FIGURE 35 Flood scenario and affected roads in Pakistan
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Transport time detour by crop: The overall impact is much lower in Pakistan, as the 
length and duration of detours are much lower than for Nigeria or Mozambique (less than 
150 km and 100 minutes), with similarly small percentage increases (4 to 65 percent) relative 
to the other two countries (see Figure 36). The longest detours are for staples like rice, 
wheat and potatoes, though pulses, beans and fruit are also impacted. It is important to note 
the map scale here, as this is a much more localized flood event over a smaller geographic 
area, and therefore has a comparatively lower impact on the overall performance of the 
network in this region.
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FIGURE 36 Detours by length and duration in the Pakistan scenario, by crop
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B. TRAVEL TIME DETOURS
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Source: Authors’ own elaboration.

Tonnage diverted and people affected: The localized aspect of the flood is clearly seen 
in Figure 37: the impact felt is greatest by far in the city in the centre of the study area, 
and tails off quickly in the surrounding towns (where alternative routes outside the study 
area are more rapidly reached).

Even a very localized flood event can have a substantial impact. In Figure 38 we see 
that over 50 percent of all products delivered to Dera Ismail Khan are affected, albeit with 
significant variation in impact for each crop. Almost 100 percent of potato transport is affected, 
impacting over 70 000 people. The figures for transported tonnage of rice and wheat affected 
are 78 percent and 77 percent respectively, affecting over 50 000 people in each case.
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FIGURE 37 Tonnage diverted per month in the Pakistan scenario
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Source: Authors’ own elaboration.

FIGURE 38 People affected and tonnage diverted per month by crop in 
the Pakistan scenario
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Further comparisons across countries
The uncorrected proximity-based resilience metric scores are 0.075 (for Mozambique), 
0.174 (for Pakistan) and 0.182 (for Nigeria); however there is very little change before and 
after the flooding, because the parts of the national network affected by these scenarios are 
relatively small. The relative detour cost resilience metric is more sensitive to local impacts, 
and for the cumulative links that have been closed off it changes by 0.75 percent for Pakistan, 
2.7 percent for Mozambique and 3.3 percent for Nigeria.
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We can also look at changes in travel times resulting from the flood’s impact on the 
network. The percentage changes for all crops have already been given in each scenario 
described, but we expand them here for all crops (see Table 6).

Finally, we also consider the topology and connectivity of the transport network, 
independently through graph metrics. In many of our graph metrics, Nigeria and Pakistan 
are very close in their scores, and Mozambique’s scores usually compare unfavourably 
against those of the other two. For instance, both Nigeria and Pakistan have a detour index 
of 0.90, while Mozambique has an index of 1.53. Mozambique also has the lowest pi index 
(edge density), by a factor of 10 against that of Pakistan and of 34 against Nigeria. A very 
similar comparison arises on cut points of the graph, once again with Mozambique’s scores 
among the lowest of the three. These results indicate that there is a local disturbance effect 
only. This is comparable with the scenarios that were calculated in the network resilience 
metric, and are evidence of internal consistency in our modelling.

TABLE 6 Changes in travel time over the whole network, per crop and 
per country

Crop Nigeria  Mozambique  Pakistan

All crops 4.7% 1.2% 1.2%

Bananas N/A 1.0% N/A

Beans N/A N/A 0.8%

Cassava 6.7% 0.2% N/A

Fruits 1.1% 3.3% 0.2%

Maize 2.8% 3.7% 0.1%

Millets N/A N/A 1.1%

Other roots and tubers N/A N/A 0.0%

Plantains 4.5% N/A N/A

Potatoes N/A 1.2% 1.6%

Pulses 1.5% 0.5% 0.1%

Rice 5.1% 0.3% 0.9%

Sorghum N/A N/A N/A

Sweet potatoes N/A 2.1% N/A

Vegetables 4.8% 0.1% 0.6%

Wheat 1.1% 15.9% 2.5%

Yams 4.8% N/A N/A

Source: Authors’ own elaboration.
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6 Limitations and conclusions

This work has provided a first geospatial framework to represent and model national food 
transport network resilience at a global scale. It has developed a unique and internally 
consistent database along with plausible representations of complex transport networks, 
and it has generated network and resilience metrics to characterize the network and its 
ability to transport food to meet demand. While this work has established a new toolkit 
for measuring resilience – which in turn promises further use and applications beyond 
this study – its  conceptualization and development involved many decisions that deserve 
critical reflection. 

In this section, we therefore look back on the challenges of representing diverse transport 
networks across many countries, the inevitable choices that needed to be made to model 
their resilience, and opportunities to address some of the limitations of the current workflow. 
We also consider how the workflow can be applied to other uses.

6.1 Limitations and further work 

Diverse data: Bringing together a wide variety of data sources, as in this project, is a 
challenge in itself. The data need to be internally consistent, to rest on a sound conceptual/
semantic basis that is well-understood, and fit both temporally and spatially with the other 
sources. Among other things, this meant that appropriate methods had to be devised to 
address data gaps, and that default slot fillers had to be developed. Our workflows needed to 
have appropriate data interfaces as well; this was not fully understood at the start. 

Thresholds: Our models take in data for many countries, and therefore had to depend 
on a wide variety of assumptions – often involving decisions on what to include and exclude, 
and at what level to define thresholds. We took great care in picking reasonable values for 
these decisions, but given the limited time available to experiment with such settings, some 
of the choices may be suboptimal. (An obvious example in this regard is the “snapping” grid 
resolution as used in the simplification workflow.) As such, various sensitivity tests still need 
to be conducted, in order to assess the optimality of chosen values and thresholds.

Computational intensity: While it was theoretically possible to generate resilience 
metrics for all countries, a small number of static graph metrics – such as local vertex 
connectivity for India and the centrality metrics for China, India and the United States of 
America – could not be computed. (This is despite many days of computation on dedicated 
high performance hardware.) These constraints could of course be addressed with more 
time for code and workflow optimization, but serve here as examples of the challenges 
involved in modelling a complex and detailed transport network.

Global trade model: Our global food trade model allows for international trade volumes 
available at country level to be distributed geographically to trade stations, while considering 
transport costs as characterized by type of transport and distance. The model takes transit 
routes passing from neighbouring countries and enables realistic estimates with minimum 
data input. However, better results may be obtained by studying major international 
transport routes in detail, and fine-tuning the model parameters accordingly. 

National transport model: In view of available data and time, the transport model 
employed is based on several assumptions, three of the most important of which relate to: 
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(i) the all-or-nothing assignment; (ii) the treatment of multimodality; and (iii) the within-
catchment travel time. These are discussed in more detail as follows:

(i) We assume that all freight between an origin and a destination gets assigned fully to 
one set of links that provide the overall shortest travel time. In doing so, we do not 
take into account the effects of network link capacity and/or congestion. This leads to 
over-assignment for certain links that are in reality congested, and under-assignment 
for others. 

(ii) With respect to multimodal networks, we have assumed that food gets transported over 
the links that involve the lowest cost, irrespective of whether these are road, rail or 
waterway links. We use time as cost function, based on the free-flowing speeds of these 
networks. We have not been able to use any data on the distribution of food freight over 
the different modes. It may be that in one country, freight is predominantly transported 
by rail (for example, the United States of America), whereas in our model the road 
network receives the largest share as it is more expansive. Alternatively, it may be that 
a given country uses the rail network for passengers only, yet we assign it freight. 

(iii) We assumed an average of 20 minutes for within-catchment travel time. Changing this 
average travel time would not change the results substantially (in other words, countries 
would keep the same ranking), but the proximity-based resilience values would change – 
for example an increase in average within-catchment travel time would result in higher 
proximity-based resilience metrics. It is therefore important to emphasize that this 
resilience metric should be used mainly as a comparative metric between countries. 

Metric correction: To enable a fair comparison between countries with different 
sizes, we applied a metric correction factor based on the total tonnage transported. 
This is important, because without such a correction factor, small countries would score 
artificially high on the proximity-based resilience metric, for example. Our correction 
aimed to account for “artificial scale effects” (such as when the average trip time – and 
hence the proximity-based resilience – of a small country is constrained by the physical 
size of the country), without  impacting “real effects” such as population and network 
density. There are different ways to correct for size, but the difficulty is that there are 
probably latent variables influencing the resilience metrics, and these can vary across 
countries. For example, in some countries when population density increases, people will 
tend to live closer to the production locations of crops, and when network density increases, 
detours will be shorter. In other countries, urban development may push out agriculture 
(especially large-scale agriculture), for reasons of land competition, thereby increasing the 
distance between producers and consumers. Another effect relates to areas undergoing 
urbanization; these areas are typically also undergoing economic development, which 
brings with it more buying power and changes in consumer purchasing (as when people 
allow themselves to buy more expensive or imported food items). Our models do not “punish” 
for international transport, and the cost of transport begins to accrue from the trade 
station only. This is an effect that appears to bring production closer to consumption, at 
least in our models. For possible future improvements to correction factors, it is important 
to better study the relationships between resilience metrics and these latent variables 
(such as population density and country size), and explore various typologies of countries 
based on size, network, city distribution and spatial production patterns. 

Validation: Several methods and algorithms developed during the study allowed for 
the analysis of a massive amount of geospatial data at the global level, in order to provide 
food transport resilience metrics for more than 90 countries, as well as for the ten most 
important food products for each country based on food supply. Due to the extent of the 
study and as already mentioned, certain assumptions and simplifications were unavoidable. 
A comprehensive validation study could have provided better insights on the validity of 
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these assumptions and the accuracy of the results, but was not feasible due to the limited 
time and resources available. As a suggestion for follow-up, a dedicated validation study 
may therefore be considered – such a study could aim to collect detailed information on 
actual national and international food transport for selected countries and crops, and test 
the developed models by comparing them to multiple historical disruption case studies.

Temporal aspects of network performance and resilience: Neither the global trade 
model nor the national transport models consider the temporal dimension (i.e. seasonality) 
of food transport. Although some crops are traded and transported throughout the year, 
it is well-known that others are produced and traded seasonally. Moreover, seasons vary 
by location, and depending on their latitude, different countries can experience different 
seasons at a given time of year. This has direct implications on global food trade. Depending 
on data availability, the consideration of seasonal crop production and trade will therefore 
be useful for future applications, and models need to be developed for this purpose.

Multinational network analysis: At present, the network resilience model and related 
resilience metrics consider national transport networks only. Each country is considered 
individually, and any disruptions considered are also limited to the national level (they do 
not cross country boundaries). Given that international food trade is also vulnerable 
to similar disruptions, future work could involve creating and analysing multinational 
network resilience models by combining available national transport networks with a 
global trade model. This may allow for better identification of the cascading impacts of 
large-scale disruptions affecting multiple countries. That said, single-point disruptions 
can also have significant global impact, particularly if the point in question is located on 
a critical international trade route – as demonstrated by the blockage of the Suez Canal 
in 2021.

Positive disruptions: Given that the network resilience model and related resilience 
metrics are fine-tuned to the level of considering each road, waterway and railroad 
individually, it is not only the impact of disruptions but also the impact of possible 
improvements to the food transport network that can be modelled at the lowest applicable 
hierarchical level. This offers the opportunity to explore “what-if” scenarios and assess the 
cost–benefit of different transport infrastructure innovations, such as the treatment of dirt 
roads to improve their resilience to tropical rains and to wear-and-tear, or the introduction 
of transport terminal technology to prevent post-harvest losses. As an example of the 
former, dirt road surfaces can be sprayed with an environmentally friendly sealant such 
as Road Rapid (OSO Enschede, n.d.). This results in a permanent change to the molecular 
structure of the soil and an instant hardening of the road surface to the consistency of 
rock, thereby not only reducing maintenance but also increasing the load-bearing capacity 
of the road. This  in turn creates more alternative routes, including for heavier classes 
of transport vehicles, greatly enhancing transport network resilience in the process. 
Additionally, and given the fine-grained OSM data used in our models, the sourcing of 
manpower and materials (such as soil and gravel) for labour-intensive public road works 
can now be optimized, for example by identifying small and medium-sized enterprises 
(SMEs) that are active in (road) engineering along trade corridors, and potentially creating 
youth employment opportunities that also benefit rural economies. As examples of the 
latter, there has been renewed interest in post-harvest terminals and cold stores such as 
those developed by ColdHubs (n.d.). As off-grid, renewable energy solutions become more 
generally accessible, they enable such innovations to become more broadly applicable. 

Including non-traditional data sources: In a potential future evolution, we could 
consider crowdsourcing or citizen science techniques to capture relevant socio-economic 
aspects, as illustrated in the example of an award-winning app that was developed by a 
spin-off group at the University of Twente in the Netherlands (CHEETAH, n.d.). CHEETAH 
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(which is an acronym for Chains of Human Intelligence towards Efficiency and Equity 
in Agro-Food Trade along the trans-Africa Highway) uses a smartphone app to capture 
information on non-tariff barriers that impede transport operations; these include highway 
tolls, unapproved barriers, customs, traffic, illicit payments, police checkpoints, local 
tolls and road barriers. At the same time, Edge AI (artificial intelligence) that also runs 
on the smartphone is used to capture information on road pavement quality, including 
speed bumps, rough patches, potholes, bridge expansion joints, rumble strips, corrugated 
surfaces, road stops and sunken utility covers (see Figure 39). 

FIGURE 39 Example of road patch quality in Ghana as crowdsourced 
from CHEETAH

Source: Ujuizi Laboratories, 2018.

CHEETAH can reduce costs for drivers, for example on tire damages and frequent 
mechanical maintenance, and in the process help public agencies in capturing road pavement 
quality to address some of the prioritization, planning and monitoring needs associated 
with improvements to transport resilience. Similarly, current cost–benefit analyses often 
ignore the ways in which (positive) changes and improvements to road infrastructure 
reduce post-harvest losses (Vursavuş and Özgüven, 2004; Idah, Ajisegiri and Yisa, 2007;  
Venus et al., 2013); these can now also be (dis)aggregated, given the richness of the 
underlying data models.
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6.2 Conclusions

This work has provided a first geospatial framework to represent and model national food 
transport network resilience at a global scale. It has developed a unique and internally 
consistent database along with plausible representations of complex transport networks, 
and has generated network and resilience metrics to characterize the network and its 
ability to transport food to meet demand. As discussed, the process of conceptualization 
and development involved many decisions that deserve critical reflection, and further 
work is required; nevertheless the work completed to date has established a new toolkit 
for measuring resilience, and offers a range of further uses and applications beyond  
this study. 
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Annex

TABLE A1 List of countries analysed 

Afghanistan Democratic Republic of the Congo Papua New Guinea

Algeria Ghana Peru

Angola Guatemala Philippines

Argentina Guinea Republic of Korea

Australia Guinea-Bissau Russian Federation

Azerbaijan Haiti Rwanda

Bangladesh India Saudi Arabia

Benin Indonesia Senegal

Bolivia (Plurinational State of) Iran (Islamic Republic of) Sierra Leone

Brazil Iraq Somalia

Burkina Faso Italy South Africa

Burundi Jamaica South Sudan

Cambodia Japan Sri Lanka

Cameroon Kazakhstan Sudan

Canada Kenya Syrian Arab Republic

Central African Republic Lao People’s Democratic Republic Thailand

Chad Liberia Togo

Chile Madagascar Tunisia

China Malawi Turkey

Colombia Pakistan Uganda

Congo Malaysia Ukraine

Côte d’Ivoire Mali United Kingdom of Great 
Britain and Northern Ireland

Democratic People’s 
Republic of Korea Mauritius United Republic of Tanzania

Dominican Republic Mexico United States of America

Ecuador Morocco Uzbekistan

Egypt Mozambique Venezuela  
(Bolivarian Republic of)

Ethiopia Myanmar Viet Nam

France Nepal Yemen

Gabon Niger Zambia

Germany Nigeria Zimbabwe

Source: Authors’ own elaboration.







Transport infrastructure and logistics, not least domestic food transport networks, 
are an integral part of agrifood systems, and play a fundamental role in ensuring 
physical access to food. However, the resilience of these networks has rarely 
been studied. This study fills this gap and analyses the structure of food transport 
networks for a total of 90 countries, as well as their resilience through a set 
of indicators. 

Findings show that where food is transported more locally and where the network 
is denser, systematic disturbances have a much lower impact. This is mostly the 
case for high-income countries, as well as for densely populated countries like 
China, India, Nigeria and Pakistan. Conversely, low-income countries have much 
lower levels of transport network resilience, although some exceptions exist.

The study further simulates the effect of potential disruptions – namely floods – 
to food transport networks in three countries. The simulation illustrates the loss 
of network connectivity that results when links become impassable, potentially 
affecting millions of people.

Overall, this study provides a first geospatial framework to represent and model 
national food transport network resilience at a global scale considering not only 
local production and consumption, but also international trade. It has established 
a new toolkit for measuring resilience, which promises further use and applications 
beyond this study.
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